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Binary Dependent Variable: The Linear Probability Model
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Introduction - Binary Choice Model

• Binary or dummy explanatory variables are often used in regressions.
• In binary choice models, we want to consider the use of dummy
variable as the dependent variable.
• We want to explain a qualitative outcome of y = 0/1 (=no/yes)

• study the question of married women’s labor force participation (in the
labor force or out), or

• whether a student is accepted to SIAI.
• How do we interpret population model

y = β0 + β1x1 + β2x2 + ...+ βkxk + u

when y is binary? (also called "Boolean" for True/False values in
computer science, named after George Boole, a mathematician)
• y can only change between 0 and 1.
• Suppose β1 = .035 and x1 = educ. What does it mean for one year

increase in educ to increase y by 0.35?
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The Linear Probability Model I

• Recall that the standard linear regression model, E(u|x) = 0, yields

E(y |x) = β0 + β1x1 + β2x2 + ...+ βkxk

• We interpret βj as

∆E(y |x) = βj∆xj holding other regressors fixed

• With y taking only the values 0 and 1,

E(y |x) = 0 · Pr(y = 0|x) + 1 · Pr(y = 1|x)
= Pr(y = 1|x)

• We will therefore interpret βj in this case as the effect a regressor has
on the probability that y = 1, holding everything else fixed.
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The Linear Probability Model II

• The use of the multiple linear regression model

y = β0 + β1x1 + β2x2 + ...+ βkxk with E(u|x) = 0

in the setting where y is binary (and simply apply OLS), is referred to
as using a linear probability model
• The reason is that it assumes Pr(y = 1|x) is linearly related to the

regressors:
• In other words,

Pr(y = 1|x) = E(y |x)
= β0 + β1x1 + β2x2 + ...+ βkxk + E(u|x)
= β0 + β1x1 + β2x2 + ...+ βkxk ← linear in β
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The Linear Probability Model III

• Pr(y = 1|x) = p(x) yields the response probability (x denotes all
explanatory variables).
• In binary choice models, our interest is to evaluate how explanatory

variables can affect the response probability

Pr(y = 1|x) = β0 + β1x1 + β2x2 + ...+ βkxk

• Conclude: In the LPM, the parameters have a nice interpretation

∆Pr(y |x)
∆xj

= βj

• "How does the probability change when x change, ceteris paribus?"
• The partial (marginal) effects are constant (in real world?)

• This means, e.g., in the labour participation example, every extra year
of education affects the probability of participating in the labor market
with the same amount.
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The Linear Probability Model IV

• Using a sample, we can obtain OLS parameter estimates and the
regression line

ŷ = β̂0 + β̂1x1 + β̂2x2 + ...+ β̂kxk ,

• ŷ is the predicted probability that y = 1 : Pr(ŷ = 1|x).
• β̂0 is the predicted probability when each xj is set to zero (may not

make sense).
• β̂j measures the change in the estimated probability of y = 1 when

∆xj = 1 other factors held fixed.

EXAMPLE: Married Women’s Labor Force Participation
The variable inlf is one if a woman worked for a wage during a certain year,
and zero if not. (Note: What about married = 0/1 and woman = 0/1?)
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The Linear Probability Model V

The estimated LPM: n = 753, R2 = .264̂inlf = .586
(.152)

− .0034
(.0015)

nwifeinc + .038
(.007)

educ + .039
(.006)

exper

− .0006
(.00019)

exper 2 − .016
(.002)

age − .262
(.032)

kidslt6 + .013
(.014)

kidsge6

Heteroskedasticity-robust standard errors in brackets

• Each year of education increases the probability by an estimated .038, or 3.8
percentage points.
• Having young children has a very large negative effect: being in the labor

force falls by .262 for each young child. Reasonable?
• The coefficient on nwifeinc (other sources of income): modest effect

• If it increases by 20 ($20,000, about one std deviation), the probability of
being in the labor force falls by .068 (6.8 percentage points).

• Past workforce experience has a positive but diminishing effect.
• Years of work experience have diminishing effect, as the squared term has

negative coefficient
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Shortcomings of the LPM

• While the LPM is convenient because estimation and interpretation is
easy, it does have some shortcomings.

1 The fitted values from an OLS regression are never guaranteed to
lie between zero and one, yet they represent estimated probabilities.

2 The estimated partial effects are constant ; may lead to silly
estimated effects for large changes.
• For example, take a woman who has no other source of income, 25

years of prior work experience, no children, who is 48 years old. As a
function of educ the equation looks likêinlf = .417 + .038educ

• At educ = 12, the predicted probability is .873, at educ = 14 it is .949,
and at educ = 16, ̂inlf = 1.025 > 1.

• For the estimated model to truly represent a probability, the effect of
education should be diminishing [Quadratics are typically limited]

3 The LPM exhibits heteroskedasticity - A4 violation (not efficient)
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Shortcomings of the LPM - technical details (Optional for
MBA)
• Why does the LPM exhibit heteroskedasticity?

• Recall with y a binary (0,1) - variable

E(y |x) = 0 · Pr(y = 0|x) + 1 · Pr(y = 1|x) = p(x)

• What can we say about Var(y |x)?
• Recall: Var(y |x) = E(y2|x)− [E(y |x)]2
• E(y2|x) = 02 · Pr(y = 0|x) + 12 · Pr(y = 1|x) = p(x)

• Hence

Var(y |x) = p(x) · (1− p(x))

• Var(y |x) = Var(β0 + β1x1 + ...+ βkxk + u|x) = Var(u|x)?
• Unless β1 = ... = βk , we get heteroskedasticity, as the variance of y

depends on x! (related to over-confidence in Machine Learning)
• Thus, OLS will not be BLUE
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Logit and Probit Models for Binary Choice
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Binary Choice: Functional Specification I

• Rather than assuming p(x) is linear, we may prefer instead to model
the probability directly as

Pr(y = 1|x) = G(β0 + β1x1 + β2x2 + ...+ βkxk)

for some function G that takes values between zero and one.
• A natural choice for G(·) is to use a cumulative distribution function.
• When z = β0 + β1x1 + β2x2 + ...+ βkxk is large, the probability of

y = 1 is close to one.
• Two most used cases are

G(z) = Logistic CDF = Λ(z) = exp(z)
[1 + exp(z)] (logit)

G(z) = Normal(0, 1) CDF = Φ(z) =
∫ z

−∞

1√
2π

exp(−1
2u

2)du (probit)

Keith Lee Data-based Decision Making Lecture 5 October 7, 2021 12 / 30



Binary Choice: Functional Specification II

• Both G functions have similar shapes but the logistic is more spread
out.

Probit and Logit Response Functions

−4 −2 0 2 4

0

0.2

0.4

0.6

0.8

1 logit: exp(z)/[1 + exp(z)]
probit: Φ(z), CDF of N(0,1)
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Binary Choice: Functional Specification III
• We may consider the following, non-linear, regression model

y = G(β0 + β1x1 + β2x2 + ...+ βkxk) + u

where E(u|x) = 0.
• We could then minimize the residual sum of squares (non-linear)

min
b

n∑
i=1

(yi − G(b0 + b1xi1 + b2xi2 + ...+ bkxik))2

• Predicted values will always lie between zero and one.

ŷi = G(β̂0 + β̂1xi1 + β̂2xi2 + ...+ β̂kxik)

• Would not be efficient, as we still have the heteroskedasticity in the
model - variance changes as x changes

Var(y |x) = G(x)(1− G(x)) ≡ Pr(y = 1|x)(1− Pr(y = 1|x))
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Logit and Probit - Empirical example I

EXAMPLE: Married Women’s Labor Force Participation The variable inlf
is one if a woman worked for a wage during a certain year, and zero if not.

Keith Lee Data-based Decision Making Lecture 5 October 7, 2021 15 / 30



Logit and Probit - Estimating Partial Effects I

• Important: The parameters estimates provided by probit/logit, β̂, are
not the partial effects.
• Recall: In binary choice models, the partial effect should explain how
each explanatory variable affect the probability that y = 1 holding
everything else constant
• In LPM, where we specified Pr(y = 1|x) linearly

Pr(y = 1|x) = β0 + β1x1 + ...+ βkxk

βj does denotes the partial effect of interest.
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Logit and Probit - Estimating Partial Effects II
• In probit/logit model, we specified Pr(y = 1|x) non-linearly (ensuring

restricted between 0 and 1)

Pr(y = 1|x) = G(β0 + β1x1 + ...+ βkxk)
• For continuous explanatory variables, the partial effect is given by

∂p(x)
∂xj

= ∂G(xβ)
∂xj

= βjg(xβ) (chain − rule)

where xβ = β0 + β1x1 + ...+ βkxk and g(z) = dG(z)/dz
• For explanatory variables that are dummy variables, the partial

effect evaluates the difference in probability of participation when the
dummy variable switches from 0 to 1. Say x1 is a dummy variable, then

∆Pr(y = 1|x)
∆x1

=G(β0 + β1x1 + ...+ βkxk)

− G(β0 + β1x1 + ...+ βkxk)
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Logit and Probit - Estimating Partial Effects III

• Unlike in the LPM βj does not have an easy interpretation.
• The sign of βj does tell us whether the partial effect is positive or
negative (because g(z) > 0), but the magnitude of the partial effect
depends on g(xβ).

∂p(x)
∂xj

= ∂G(xβ)
∂xj

= βjg(xβ)

• The partial effect is not constant! Depends on x.
• For reporting a partial effect, we consider

1 Partial effect of the average individual (PEA)
2 Average partial effect of all individuals (APE)
3 Partial effect of an individual with specific characteristics
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Logit and Probit - Estimating Partial Effects IV

• Partial effect of the average individual (PEA)

P̂EAj = g(β̂0 + β̂1x̄1 + β̂2x̄2 + ...+ β̂k x̄k) · β̂j

where x̄j denotes the average of the jth explanatory variable.
• Average partial effect of all individuals (APE)

ÂPE j = 1
n

n∑
i=1

g(β̂0 + β̂1x̄i1 + β̂2x̄i2 + ...+ β̂k x̄ik) · β̂j

• Partial effect of an individual with specific characteristics

g(β̂0 + β̂1x̃1 + β̂2x̃2 + ...+ β̂k x̃k) · β̂j

where x̃j denotes a particular value for the j th explanatory variable.
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Logit and Probit - Estimating Partial Effects V

• If x1 is a dummy variable, we can estimate our partial effects using:
•

P̂EA1 =G(β̂0 + β̂1 × 1 + β̂2x̄2 + ...+ β̂k x̄k)
− G(β̂0 + β̂1 × 0 + β̂2x̄2 + ...+ β̂k x̄k)

•

ÂPE 1 =1
n

n∑
i=1

G(β̂0 + β̂1 × 1 + β̂2xi2 + ...+ β̂kxik)

− G(β̂0 + β̂1 × 0 + β̂2xi2 + ...+ β̂kxik)

• The APE represents an average treatment effect (ATE). (The
"treatment", x1, is binary.)
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Logit and Probit - Estimating Partial Effects VI

• Evaluating marginal effects for the average person has the following
potential problems.
• If some explanatory variables are discrete, the averages of them

represent no one in the sample (even population)
• E.g., consider dummy variable rural (60% of our sample is rural). What

sense does it make use of 0.6 for rural ?
• If a continuous explanatory variable appears as a nonlinear function,

how should the averages be obtained?
• E.g., consider variable log(sales). Should we use log(sales) or

log(sales)?
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Logit and Probit - Empirical example I
• The Partial Effect of the Average individual (PEA)

ÂPE j = g(β̂0 + β̂1x̄1 + β̂2x̄2 + ...+ β̂k x̄k) · β̂j
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Logit and Probit - Empirical example II
• The Average Partial Effect of all the individuals (APE)

ÂPE j = 1
N

N∑
i=1

g(β̂0 + xi1β̂1 + xi2β̂2 + ...+ xik β̂k) · β̂j
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Logit and Probit - Empirical example III

• Recall, in Linear Probability Model (LPM)

înlf = .586− .0034nwifeinc + .038educ + ...− .262kidslt6 + ..

• For every additional young child, labor force (LF) participation
decreases with 26.2 percentage points.

• Reasonable?
• As discused, in probit/logit model, the marginal effects are not
constant
• Indeed, they do permit the largest effect on LF participation to be
associated with first child.
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Logit and Probit - Empirical example IV
• Compare the predicted LF participation for the average person with
different numbers of young children:

Pr(infl = 1|x̄, kidslt6 = 0)

= Φ(.27− .012nwifeinc + .131educ + ...− .868 · 0 + ..) = .707
Pr(infl = 1|x̄, kidslt6 = 1)

= Φ(.27− .012nwifeinc + .131educ + ...− .868 · 1 + ..) = .373
Pr(infl = 1|x̄, kidslt6 = 2)

= Φ(.27− .012nwifeinc + .131educ + ...− .868 · 2 + ..) = .117

• The first young child reduces the LF participation with 33.4 percentage
points.
• P̂r(infl = 1|x̄ , kidslt6 = 1)− P̂r(infl = 1|x̄ , kidslt6 = 0) = −.334

• The second young child reduces the LF partipation with 25.6
percentage points.
• P̂r(infl = 1|x̄ , kidslt6 = 2)− P̂r(infl = 1|x̄ , kidslt6 = 1) = −.256

• Effect is not constant: The biggest effect of having young children is
the first one!
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Hypothesis Testing: Probit/Logit Model
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Testing single linear restriction: z-test

• How do we test a null hypothesis?
• Example: H0 : β2 = 1, against HA : β2 6= 1
• Your regression output provides parameter estimates (β̂1, β̂2, ...) and

their SE’s.
• Test statistic:

z = β̂2 − 1
SE (β̂2)

a∼ N(0, 1) under H0

• Reject H0 if |z | > 1.96 at the 5% level of significance.
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Testing multiple linear restriction: F-test

• How do we test multiple linear restrictions?
• Example: H0 : β2 = 0 and β3 = 0, against HA : β2 6= 0 and/or β3 6= 0
• OLS: Recall we used the F test for multiple linear restrictions

• In this test, you compared the restricted residual sum of squares
(RRSS) with the unrestricted residual sum of squares (URSS) (or
equivalently R2

R with R2
UR).

• Made sense, because the OLS attempts to minimize the residual sum of
squares (test loss of fit)

• Goes back to F -test
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Example "Chow" Test

• Extension: How can we test whether the labor market participation
for women is the same for urban (city = 1) as it is for rural women
(city = 0).
• We want to test:

H0 : βruralj = βurbanj for all j = 0, 1, ..., k
H1 : At least one βruralj 6= βurbanj

• We have k + 1 restrictions we want to test (intercept + slopes)
• F -test stat

F = (RRSS − URSS)/(k + 1)
URSS/(n − 2(k + 1))

• Reject H0 if F -test stat crosses the critical value

Keith Lee Data-based Decision Making Lecture 5 October 7, 2021 29 / 30



Example "Chow" Test

• Restricted model
• The LF participation decision is the same for urban and rural women
• To obtain RRSS , we simply perform probit (logit) using all

observations
• Unrestricted model

• The LF participation for rural and urban women are different
• To obtain URSS we can run separate probit (logit) regressions for the

urban and rural sample
• From here we compute URSS = RSSurban + RSSrural
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