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Question 4. In the paper ”The Costs of Remoteness: Evidence from German Division and Reunification”,
the researchers investigate the importance of market access for economic development. They use as a natural
experiment the construction of the Iron Curtain which divided Germany into Eastern and Western parts, be-
tween which all trade was stopped.
The sample consists of all West German cities with a population of more than 20,000 in a base year. The
researchers have observations on a measure of economic development (denoted by y) before and after the con-
struction of the Iron Curtain. Their treatment group is cities within 75km of the border (which are presumed
to lose access to markets with division of Germany) and the control group is all other cities.

1. Explain why a simple comparison of y in treatment and control groups after division is unlikely to provide
a good estimate of the effect of losing market access.

Before
Iron Curtain

After
Iron Curtain

Treatment Group ① ③

Control Group ② ④

① : Treatment Group
② : Control Group
③ : Treatment Group + time effectt + treatment effect
④ : Control Group + time effectc

A simple comparison of y in treatment and control groups after division = comparison of ③ and ④
A simple comparison is unlikely to provide a good estimate of the treatment effect since we can’t ensure
that the time effect of the treatment group and the time effect of the control group are the same.

■ The procedures for providing a good estimate of the treatment effect

(a) Assume Random sampling

(b) Obtain the time effect with ④-②

(c) Subtract the time effect from ③

(d) Compare the ① with ③ obtained in (b)

2. What equation would you estimate with this data and what parameters of this equation tell you about
the causal effect of interest?

Tc =

{
1 if city is treated
0 if city is not treated

Dt =

{
1 for periods at or after treatment
0 for periods before treatment

xct = covariates.

yct = βxct +Dt + Tc + δ (Tc ·Dt) + Uct

∴ δ = treatment effect (causal effect)
The reason for adding xct(covariates) here is to satisfy the Cetris Paribus.

3. You now also have more observations on y both before and after the construction of the Iron Curtain.
Why might this information be useful and how would you use it?

If we have more observations on y, the effect of the outlier can be canceled out, so that the accuracy of
the ATE increases and a value close to the true value can be obtained.
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Question 7. Suppose we are interested in the effect of treatment T on Y . We estimate a regression of the
form

Yi = β̂0 + β̂1Ti + ϵ̂i

Y is a continuous outcome variable and T is a discrete treatment indicator that is 1 if an individual received
the treatment and 0 otherwise. Suppose that you estimate β̂1 using OLS.

1. Show that can be decomposed two components, the treatment on the treated (TOT), and a selection bias
term (SB).
(Hint: TOT = E[Y1i − Y0i | Ti = 1] and SB = E[Y0i | Ti = 1] − Y0i[Ti = 0] where Y1i is the outcome in
the state of the world where an individual receives the treatment and Y0i is the outcome in the state of
the world where an individual does not receive the treatment.)

E (Yi | Ti = 1)− E (Yi | Ti = 0) observed difference

=E (Y1i | Ti = 1)− E (Y0i | Ti = 0)

=E (Y1i | Ti = 1)− E (Y0i | Ti = 1) + E (Y0i | Ti = 1)− E (Y0i | Ti = 0)

=E (Y1i − Y0i | Ti = 1)︸ ︷︷ ︸
TOT

+E (Y0i | Ti = 1)− E (Y0i | Ti = 0)︸ ︷︷ ︸
SB

2. Suppose treatment was conditionally randomly assigned based on some characteristic X. Must you in-
clude X in the regression to ensure that β̂1 converges to true β1? (MSc Only)

True. We must include X in the regression.

3. Now suppose that treatment was not randomly assigned but you find a control group which looks similar
to your treatment group. You collect some more data so you can estimate a regression of the form:

Yit = β̂0 + β̂1Ti + β̂2At + β̂3(At × Ti) + ϵ̂it

The variable A is 0 at time t = 1 and 1 at time t = 2. The variable T is 1 for the treatment group (in all
periods) and 0 for the control group. The treatment occurs between time t = 1 and t = 2. Show how this
regression estimates the effect of T on Y . What assumptions does this estimation method imply?

At =

{
0 at time t = 1
1 at time t = 2

Ti =

{
1 for the treatment group
0 for the control group

Number of cases (i, t) : (0,1) (0,2) (1,1) (1,2)

When (i, t) = (0,1) : Ti = 0, At = 0, At × Ti = 0

Y01 = β̂0 + ˆϵ01
control group at time t=1

When (i, t) = (0,2) : Ti = 0, At = 1, At × Ti = 0

Y02 = β̂0 + β̂2 + ˆϵ02
control group at time t=2, including time effect β̂2

When (i, t) = (1,1) : Ti = 1, At = 0, At × Ti = 0

Y11 = β̂0 + β̂1 + ˆϵ11
treatment group at time t=1, β̂1 is difference between treatment group and control group

When (i, t) = (1,2) : Ti = 1, At = 1, At × Ti = 1

Y12 = β̂0 + β̂1 + β̂2 + β̂3 + ˆϵ12
treatment group at time t=2, including time effect β̂2, treatment effect β̂3
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In summary,
β̂1 : difference between treatment group and control group
β̂2 : time effect
β̂3 : treatment effect

This estimation method imply assumption that β̂1 should be 0.
If there is no selection bias, β̂1 = 0, then Y01 = Y11

4. Suppose you had 3 periods of data now, so that you could estimate a regression of the form

Yit = β̂0 + β̂1Ti + β̂2A2t + β̂3(A2t × Ti) + β̂4A1t + β̂5(A1t × Ti) + ϵ̂it

The variable A2t is 1 at time t = 2 and 0 otherwise. The variable A1t is 1 at time t = 1 and 0 otherwise.
How does the coefficient β̂5 help you test the identifying assumptions from (3)?

A2t =

{
1 t = 2
0 otherwise

A1t =

{
1 t = 1
0 otherwise

Ti =

{
1 for the treatment group
0 for the control group

If we have 3 periods, t = 0, 1, 2
Number of cases (i, t) : (0,0) (0,1) (0,2) (1,0) (1,1) (1,2)

When (i, t) = (0,0)

Y00 = β̂0 + ˆϵ00
control group at t=0

When (i, t) = (0,1)

Y01 = β̂0 + β̂4 + ˆϵ01
control group at t=1,
where β̂4 : time effect between t=0 and t=1

When (i, t) = (0,2)

Y02 = β̂0 + β̂2 + ˆϵ02
control group at t=2,
where β̂2 : time effect between t=0 and t=2

When (i, t) = (1,0)

Y10 = β̂0 + β̂1 + ˆϵ10
treatment group at t=0,
where β̂1 : difference between treatment group and control group (before treatment)

When (i, t) = (1,1)

Y11 = β̂0 + β̂1 + β̂4 + β̂5 + ˆϵ11
treatment group at t=1,
where β̂5: Treatment group’s effect at t=1

When (i, t) = (1,2)

Y12 = β̂0 + β̂1 + β̂2 + β̂3 + ˆϵ12
treatment group at t=2,
where β̂3 : Treatment effect

In (3), The treatment occurs between time t = 1 and t = 2.
It means there is no treatment at t=1.
Hence, β̂5 should be 0, then we can assume there is no selection bias, which satisfies assumptions(Cetris
Paribus) from (3).
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