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1 Causality in Data Science

You have studied how OLS controls for the effects of other variables on y. Does this mean that the effect of
some regressor x; on y when estimated by OLS can be given a causal interpretation? Before we address this
issue we will first attempt to define what we mean by causality.

We start with a definition of causality borrowed from the experimental sciences. An effect is said to be causal
if it is the result of a controlled experiment where everything else is the same and only the ”treatment dosage”
changes among observations. We can then be sure that the observed effect is a result of the different treatments
and from nothing else.

Suppose you want to check if a new drug improves health. We are interested in the causal effect of the drug
since we want to be sure that it is the drug affecting health outcomes and not other things that change among
patients taking the drug. You run an experiment where you have 100 identical individuals and you give the
drug to 50 of them (the treated group). The effect of the drug is the difference between the average health
outcome of the 50 individuals in the treated group and the 50 individuals in the control group (those who did
not receive the drug). Let y* denote the health outcome when the drug is received and let y° denote the health
outcome when the drug is not received. Then the effect of the drug is estimated by the difference in sample
means between the treated and control groups

g -y (1)

This difference estimates the causal effect of the drug because this difference cannot be driven by other things
since by construction all the individuals are identical. This naive estimator of the treatment effect is correct
because of the experimental design.

1.1 Random Assignment

Finding identical individuals is practically impossible so experiments are usually done in a different way. The
key issue in an experiment is to assign the treatment (e.g., the drug) in a random way. This is called a random-
ized experiment, and we say that the treatment was randomly assigned.

We now have 100 possibly not identical individuals and we assign the drug randomly to 50 of them. Expression
(1) still estimates the causal effect of the drug. Why? Random assignment ensures that receiving the drug is
not systematically correlated with other variables affecting the health outcome (e.g., age, gender, health history,
etc.). So even if the individuals differ between the two groups, random assignment ensures that the average
characteristics of the treatment and control groups are the same (same average age, same proportion of males,
same average health history, etc.). We say that the other characteristics are balanced. The only systematic
difference between the treatment and control groups is the treatment itself and nothing else. This is what is
needed to estimate the average causal effect of the treatment. That is, we estimate an ”average” treatment
effect and this is all that we can aspire to when individuals are not identical.

To be precise, we will never be able to estimate the causal effect for a particular individual because a particular
individual is either treated or not treated and therefore we observe only one value of y for this person (i.e., the
value when treated or when not treated). Having data on y before and after the experiment does not solve the
problem unless we can control for all other things occurring between the two time periods that can affect y.

When comparing treated to control individuals we want to "hold all other factors (or characteristics) fixed”
or "keep all other things equal”. In a randomized experiment, this is always the case because the experiment
is designed so as to ensure that all other factors are, on average, the same between the treated and control
populations. The difference between treated and control average outcomes, equation (1) thus estimates an
average causal effect because the average difference is the result of the different treatments and from nothing
else. It is therefore easy to estimate the causal effect when treatment assignment is random. Indeed we could
define causality as:

A causal effect can be defined as the effect obtained when the treatment is randomly assigned.
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1.2 Non-Experimental Data

But if the treatment (e.g., the drug, the amount of education, etc.) is distributed or assigned in a non-random
way, estimator (1) usually does not estimate the causal effect. When the assignment is not random, the treat-
ment and control groups may differ in other characteristics (not only in the treatment). If these characteristics
affect the outcome variable then the simple comparison of averages also picks up this effect, in addition to the
causal effect.

Example 1. Effect of an R&D grant on R&D investment. Suppose large firms receive most of the R&D grants
(grants are non randomly assigned) and that large firms also invest more resources in R&D than other firms
(say because the ”technological size” of the projects are larger). Thus, the difference between the mean R&D
investment of the firms that received the R&D grant (the treated firms) and those that did not receive the grant
(the control firms) overestimates the causal effect of the grant on R&D investment. Firm size is a characteristic
that affects both the extent of R&D expenditures and the probability of receiving an R&D grant.

Randomized experiments are unusual in data science. For ethical/moral reasons we do not randomly select
people to attend school for different number of years. Nor do we give away government money randomly. The
data available to us is non experimental and it usually comes from government agencies or private companies.

1.3 Correlation

Before we examine how data science deals with non-experimental data we clarify the difference between corre-
lation and causality. Causality is not the same as correlation. Recall that the correlation between two random
variables z; and y is

_ Cov(zy,y)
= VW .

The correlation is the covariance between z; and y normalized by the standard deviations. Simply finding a
correlation between z; and y is not enough to conclude that a change in x; causes a change in y. It would be
enough if z; is randomly assigned. But correlation can be the result, for example, of a third factor c: That is,
x; is correlated with ¢ and c is correlated with y. x; and y might then be correlated, when c is not accounted
for, but z; does not necessarily cause y.

Example 2. Persons with higher intellectual ability (c) study more years (z;) and also earn higher incomes
(y). The data will show a positive correlation between number of years of education and income which does not
necessarily reflect a causal effect from education to income. Because education is not randomly assigned, the
positive correlation can be the result of other factors, such as gender, ability, location, income, etc., and
the challenge is to understand whether it reflects, in addition, a causal effect.In this example, the correlation
between y and x; arises because of common factors affecting both y and z; that are omitted from or not
accounted for in the analysis. In short, omitted factors can give rise to a correlation that has nothing to do
with causality.

Example 3. (Levitt, 1997) City-level data in the U.S. usually shows a positive correlation between police and
crime The estimated correlation between crime and police officers is 0.86. This positive correlation could be
due to city size but even after controlling for population size we get a positive correlation between crime per
capita and police officers per capita of 0.37.

This is an example of another problem we face when trying to uncover causal relationships. Both variables may
be simultaneously determined and the observed data reflects their equilibrium values. We will later analyze in
detail a demand and supply example where price and quantity are simultaneously determined. It is possible
that a larger police force does indeed reduce crime but it is also likely that the level of crime affects the number
of police officers assigned to a city. Thus, we observe a positive correlation in the data because cities with
more crime have larger police forces. In short, simultaneity among the dependent and independent variables is
another source of correlation among these variables that is not related to causality. Levitt (American Economic
Review, 2002) shows that accounting for this simultaneity implies that the causal effect of police on crime is
negative despite the positive correlation. Here also correlation does not equal causality.

As these examples show we should never infer causality from correlation, anything is possible. As mentioned
before that we are interested in the causal connection between two variables because policy changes should be
based on knowledge of causal relationships and not merely correlations. In addition, data science theories (or
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any models in science) (implicitly) talk about causal relationships, not correlations, and therefore knowledge of
the existence (and/or strength) of a causal relationship can serve to test theories and models. Also, in many
instances data science theory may be ambiguous as to the effect of a policy change. For example, do higher
taxes increase tax revenue? Do higher R&D grants increase company-financed R&D investments?. If we es-
timate the causal effect of a policy change we can evaluate the effectiveness of such policy change and make
informed recommendations. For this it is crucial to know whether x; causes y and not merely whether z; and y
are correlated. Unless causality can be established, the estimated correlation has little interest for data scientists.

If an estimated relationship can be given a causal interpretation then we can use the estimated causal effects
to answer "what if” questions (what happens to R&D investment if R&D subsidies are increased, all other
factors remaining unchanged? i.e. Ceteris Paribus) which is crucial for recommending and evaluating policies.
One goal of the course is to understand under what conditions it is possible to estimate causal effects with
non-experimental data, and how to do it.

2 Partial Effects

In dat science, we are interested in the change in the mean of y due to a change in x; , holding all other relevant
factors constant (partial effect of z; on E(y|j,))

OE(y|x)

for continuous z;. (What if z; is discrete?)

For example, in the model E(y|z1,x2) = B121 + Baxa + B323, the partial effect of 25 on y is (ylx) = B2 +2B315.
One thing that people do not often realize is that, in this case, we are not that much interested in o and (3
per se because, by themselves, they do not tell us much. Our interest is in 8 + 283x2 and in tracing how this
partial effect varies with xo. If, for example, o measures ”size” then we would like to know whether the effect
of x5 on y differs with size. (The impact of 23 in the regression.)

When z; is discrete, partial effects are computed by comparing E(y|z) at different settings of z;, holding all
other variables fixed. For example, if z; is a 0/1 binary (dummy) variable then its partial effect is the change
in E(y|z = o) when only z; changes, say, from 0 to 1,

E(ylz1 = 210, .., x5 = 1, ...,k = xko) — E(ylz1 = 210, ..., 2, =0, ..., 2% = Tko)

Example 4. Suppose that E(y|z1,22) = f121 + 222, and that x5 is a dummy variable. Then the partial effect
of x5 is

E(ylzy, 22 = 1) — E(y|a1, 22 = 0) = B2
In this simple example the partial effect of x5 does not depend on x1.
Example 5. If the model now is E(y|x1,z2) = B121 + Baxa + f3x122, the partial effect of x4 is
E(ylzy,r2 = 1) — E(y[z1, 22 = 0) = B2 + B321

which dependes on ;. The partial effect of z; is M’fwl) =31 + B3 or MJ@O) = (31, depending on
the choice of x5.

Example 6. Suppose z is just the dummy variable D for receiving a drug treatment and we are interested in
E(y|D). We already know that the CEF (Conditional Expectation Function) is linear

E(y|D) = p1 + B2 D

and the partial effect of D on y is (5

E(y|D =1) —E(y|D =0) = 52

which is the population version of the difference in means between the treated and control groups, equation (1).
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This example shows that f2 can be equivalently estimated by a simple OLS regression with a single (dummy)
regressor (and intercept term). This would also be true if we were interested in E(y|D,c) and assume that
E(ylD,c) = B1+ B2D + cA

Note.. Sometimes the dependent variable is in (natural) logs, e.g., E(In|z) = 81 + Balnxza + P3x3 and the
OE(In y|x)

D s which is the elasticity of y with respect to xs.

partial effect of interest is

2.1 Are Partial Effects Causal?

We can always estimate the partial effect % by OLS. (How?) But can the (estimated) partial effect always
be interpreted as the causal effect of z; on y?]The partial effect of x; on y can be given a causal interpretation
if we control for all other things affecting both y and x; : This is what the other z’s in the model are supposed
to do. The difficult part in applied works is to know what the other things that need to be controlled are, and
how to measure them! This is what we mean by specification of the data science model: the choice of regressors
(and functional form) that will allow us to interpret the estimated partial effects as causal effects.

Data science models usually focus on the relationship of interest, say between y and x; but abstract from many
other variables (call them z2) that also affect y and may be correlated with z1. What is wrong with estimating
E(y|z1) instead of E(y|x1,x2)?

Nothing is wrong with this .... it is just not interesting because the estimated effects will likely not be causal
unless we can argue that x; is not correlated with x5. This is not always easy to do.

For a causal interpretation we need to have a situation where the only systematic difference between those
individuals treated (by ;) and the non-treated is the treatment itself, and not other variables that also affect
outcomes. This is guaranteed to happen in randomized experiments when z; is randomly assigned to the ob-
servations. Recall that a causal effect can be defined as the effect obtained when the treatment is randomly
assigned. Random assignment guarantees that the treatment (e.g., schooling) is uncorrelated with anything
else. With non-experimental data, however, we need to make sure that there are no other average differences
between the subjects. We do this by controlling for other factors. With non experimental data we interpret
a partial effect as being causal when we can be sure that the treatment (regressor) was assigned as if in a
randomized experiment.

Let us go over the ”thought process” involved in specifying a data science model for the effect of R&D subsidies
on R&D expenditures.

Example 7. R&D grants and investment in R&D We have non experimental data on y = company-
financed R&D investment D = dummy variable for receiving an R&D grant. Let

E(y|D) = 1 + 2D

be the relationship between R&D investment and R&D grants. Is it a causal relationship? The partial effect of
a change in D from D =0to D =1is

B2 =E(y|D =1) —E(y|D = 0) (4)

which can be estimated by the difference in sample means between treated and control groups, equation (1) or
by an OLS regression of y on D (and constant term).

For this partial effect to be causal, we need to believe that the R&D grants received are unrelated to other
characteristics of the firm that affect R&D investment such as firm size, industry, whether the firm exports or
not, etc. If this is true, then By represents a causal effect because the other characteristics affecting y are on
average the same between the firms receiving the grant and those that did not receive the grant. It is as if D
was assigned randomly to firms.

But if the R&D grant amount received is correlated with firm size, or with industry affiliation or with any other
firm characteristic that also affects the dependent variable, then (s or its estimate will not be the causal effect
of the R&D grant since they will also reflect the effect of other characteristics correlated with D that are also
affecting R&D investment:

Swiss Institute of Artificial Intelligence (SIAI) page 4 of 14



L3, SIAI

W | e 3 SPECIFICATION OF THE DATA SCIENCE MODEL

Suppose that larger firms (in terms of sales or employment) are more likely to receive R&D grants and that
larger firms also do more R&D. In this case, an estimate of (4) will result in a (upward) bias estimate of the
causal effect of the R&D grant on R&D investment.

Suppose now that instead of focusing on E(y|D) we would focus on an expectation that conditions also on other
firm characteristics:

E(y|D7J}2, "'71‘/6)

where o, ..., 21 are controls (firm size, industry, export status, etc.)

E(y|D, 3, ...,xk) is a multivariate regression function. Note that even if we are interested in the relationship
between y and D only, we want to control for other variables that affect both D and y in order to be able to
argue that we are estimating the causal effect of D on y. To be clear, even after controlling for s, ..., 2 (which
is a finite list of factors) we need to assume that D is not systematically related to other unobserved factors
(i-e., not among xs, ..., i) affecting y; for the partial effect to be causal. We can then run a regression of y on
D, zo, ...,z and interpret the estimated partial effect as causal.

The general message here is that, when the regressor of interest is a choice made by a rational agent (e.g., years
of education, number of patents, investment in R&D, labor force participation), we need to control for those
factors affecting the agent’s choice that also affect the dependent variable. Otherwise we will not be able to
infer causality from the choice variable to the outcome variable. The problem is that many of these factors are
unobserved. Many methodological advances are motivated by the need to deal with unobserved variables in
econometric models.

3 Specification of the Data Science Model

The example in the previous section makes clear that our ability to interpret the partial effect as a causal effect
depends on the specification of the CEF, i.e., on what other variables we are able to control for. This is the
"tricky” part of doing data science.

How many or which zs are "enough”? What does ”enough” mean? To answer these questions is to address a
core issue in data science work, or the specification of the data science model.

Let us analyze this issue deeper using the standard wage model as an example. For simplicity, let us abstract from
demographic characteristics (gender, origin, location, etc.) by assuming that our population is homogeneous in
this sense. Let

y = log wages
T = S, exp, exp?
To = @

where s are years of schooling, exp are years of on-the-job experience, and a is ability. We assume linear CEF’s.
We have two specifications of the model, with and without ability,

E(ylz1, z2) = E(ys, exp, a) = B1 + B25 + Bsexp + Paexp” + Bsa (5)
E(y|z1) = E(y|s, exp) = m1 + mas + m3exp + myexp? (6)

Note that we have used different notation for the parameters since the CEF is determined by a different joint
PDF in each equation. Both specifications can be written in error form with an error that is mean independent
of the regressors by construction.

y = B+ Pas + Bsexp + Paexp® + fsa+u  E(uls,exp,a) =0 (7)
y = m1 + mos + mzexp + mexp?® + v E(uls,exp) =0 (8)
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Because of the error assumption, in both cases, regressing y against its own regressors gives OLS estimators
which are unbiased and consistent estimators of the parameters of that model. The real question we face is this:

Is 8 or 7 of interest?

"Interesting” here means that the partial effect can be given a causal interpretation. Can we assert that control-
ling for experience only makes the allocation of schooling years random? The ”short” model does not control
for natural ability while the "long” one does. Is it more believable to interpret (o, rather than mo; as a causal
effect because the long regression controls for ability, which is deemed very important both in the determination
of years of education and wage? (Then, how to measure ability?)

We know there are a lot of other factors that affect education and also affect wages (e.g., family background,
type of education received, occupation, etc.) so that, in principle, we can start with a richer model and then
argue that B2 above is also not causal. This is precisely the main issue that we have to tackle when examining
an empirical study. We have to believe that we have controlled for enough factors so as to interpret the partial
effects as causal effects. This is what is meant by a correct specification of the model.

The problem of equation (8) is that the data science model says that the conditional expectation of interest is
E(ln w|s, exp,a) but in fact we estimate E(In w|s, exp). In general, the parameters in E(ln wls, exp) differ from
the parameters in E(In w|s, exp, a), so it should not be surprising that regressing y on (1, s, exp, exp?) does not
estimate 3, the parameter of interest.

The moral of this example is that once we specify the CEF, the error will be mean independent of the regressors
and therefore we will estimate the parameters of the CEF correctly. The question is whether those parameters
(partial effects) are interesting. And this depends on what you ”put” in the CEF. In other words, when regress-
ing y on = we always estimate some partial effects, but are these partial effects causal effect? That is, are we
estimating § or 7?7

It should be clear that we do not need data on all variables affecting y (this would be impossible), but we require
that the x’s being used in the regression were determined in a way which is uncorrelated with other unobserved
factors affecting the dependent variable y (and implicitly embedded in the error term). This depends on which
z’s we include in the regression. In other words, the interpretation of the partial effects as causal effects relies
on how well the model is specified, i.e., on the choice of z’s in E(y|z).

4 Treatment effects

As discussed, in data science (and other social sciences), we are interested in the causal effect of some variable
(treatment) = on an outcome variable y. For example, we are interested in the effects of education on earnings,
or in the effect of a job training program on labor force participation.

The common problem in the analysis of all these questions is that data scientists usually cannot run laboratory
experiments where individuals are randomly assigned to receive the treatment. We cannot randomly assign a
given fraction of the population to go to college; people will choose whether or not to go to college by their
own decision. They will choose to participate in a training program depending on their costs and returns of the
various alternatives. Most likely, each person has his/her own cost-benefit analysis, and outcome must be heav-
ily depending on his/her track records. Thus, simply comparing the mean outcome of treated and non-treated
individuals will not reveal the causal effect of the treatment. This is the fundamental challenge one must face
when doing empirical work. Data Science tools have been developed to allow us, under additional assumptions,
to infer causal effects using non-experimental data.

To examine this issue it is useful to use the ”potential outcomes” framework.

4.1 Potential outcomes

Assume for simplicity that there are two possible treatments, 0 (the control group), and 1 (the treatment group).
We will assume that every individual in the sample has two potential outcomes:
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yi1 - outcome if treated

Yio . outcome if not treated

If the treatment is going to college, and the outcome is earnings, we can always think of the two potential
outcomes: y;1 are earnings of individual ¢ if he goes to college, and y;o are the earnings of individual 7 if he does
not go to college. These potential outcomes are well-defined even before the actual treatment is received.

This framework allow us to define the causal effect of the treatment for individual 7 as

Yi1 — Yio (1)
and the average treatment effect (ATE) as

Let d; be the treatment indicator

4 — 1 if treated
)0 if not treated

An alternative causal effect of interest is the average treatment effect for the treated,

ATE, = E(yi1 — yiold; = 1) (3)

Some argue that AT F; is more relevant for policy purposes because, in general, we will not be interested in
what the effect of treatment is for those in the population who will never receive it (we don’t care about the
causal effect of a training program on multimillionaires!) But notice that ATE is the treatment effect on the
total population so that by carefully defining the population of interest AT E can be made as relevant as ATE;.

4.2 Estimating the causal effect

The problem of causal inference is that we can never observe y;; and y;o together for the same individual. For
an individual that receives the treatment the observed outcome is g;; and the counterfactual outcome is ;g
and, conversely, for those not treated. We only observe one of the two outcomes for each individual, i.e., we
never observe the counterfactual. Thus we will never be able to observe (1). We therefore resort to estimating
the expected counterfactual, and this leads us to estimate an average treatment effect such as ATE and ATE;.

The observed outcome for individual %, y;, is

Yi = Yio + (Vi1 — Yio)d;

A natural (naive) estimator of the average treatment effect is the difference in means of the outcome between
the treated and the untreated

E(yi|d; = 1) — E(yi|d; = 0)

which can be estimated very easily by §1 — §o, where g4 is the mean outcome mean for treated (d = 1) and non
treated (d = 0) individuals.

This estimator will estimate an average causal effect if the treatment is randomly assigned, as this implies that
d; is independent of potential outcomes y;; and y;o. In this case, E(y;1|d; = 1) does not depend on d; i.e.,
E(yzl\dl = 1) = E(y11|dl = 0) = E(yﬂ), and Similarly for Yio- Then

E(yi|d; = 1) — E(y;|d; = 0)
=E(yinld; = 1) — E(yio|d; = 0)
:E(yil) - E(yzo) = ATF
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and

E(yild; = 1) — E(y;|d; = 0)
=E(yildi = 1) — E(yio|d; = 0)
=E(yi|d; = 1) = E(yiold; = 1) = ATE,
In other words, with random assignment, the simple difference in means gives an unbiased estimate of both the

average treatment effect and the average treatment effect on the treated. There is no difference between AT E
and AT F, when treatment is randomly assigned.

If d is not randomly assigned this estimator will be biased. Suppose, for example, that more capable individuals
are given a scholarship to attend college. The mean wages of those receiving the scholarship will be above the
mean wage of those not receiving the scholarship but this difference does not represent (only) the causal effect
of the scholarship. To see this, we write

E(y;|d; = 1) — E(y;|d; = 0) observed difference
=E(yi1|di = 1) — E(yiold; = 0)
= E(yanldi = 1) — E(yio|di = 1) + E(yio|d; = 1) — E(yi0|d; = 0)

ATE, selection bias

E(yi|d; = 1) — E(yi0ld; = 1) is the causal effect of the scholarship on those who received the scholarship. It
represents the mean difference in wages obtained with the scholarship and the wages that would have been
obtained without the scholarship, for those individuals who received the scholarship. The selection term picks
up the difference in wages before the scholarship is given between those that will receive it and those that will
not receive it.

If, as argued, more capable individuals get the scholarship then the selection term is positive and a positive
difference in observed mean outcomes does not necessarily imply a positive causal effect of the scholarship. Note
that it would be enough to assume that d; is independent of potential outcomes yg; only to ensure that the
simple difference in mean-outcome is an unbiased estimate of AT FE;:

4.3 Difference in differences

Panel data can be useful to infer causality when the treatment is not randomly assigned (the usual situation in
data science). The basic assumption is an additive structure for the non-treatment potential outcome

E(yitolci, Ade) = ci + Nt (4)

where ¢ index time.

The outcome of individual ¢ when treatment is absent equals the sum of a time-invariant individual effect and
a time-effect common across all . For simplicity, we abstract from other covariates x;; affecting potential
outcomes. We next assume

E(yit1lei, Ade) = E(yito) + 0 (5)

so that the average causal effect of the treatment is § = E(y;s1 — yizo) = ATE, which is constant over ¢ and .
In terms of the observed outcome y;; we have

Yit = Yiro + (Yirr — Yiro)die

and the assumptions imply

Yito = C; + A + Ui where E(uit|c;, A\t) =0
Yitl = Ci + Mg + 0 + Uy
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so that we can rewrite the observed outcome as

Yit = € + A + Odyp + e (6)

We can estimate ¢ by comparing appropriate differences in observed outcomes between treated and non-treated
individuals. Suppose d;+—1 = 0 and d;; = 1 for an individual i. The mean change in y between ¢t — land ¢ for
this treated individual is

E(yitlci, A, dir = 1) — E(yie—1]ci, Ae — 1, diz—1 = 0)
=ci + M+ 0+ E(uslei, A, die = 1) — (¢i + M—1 + E(ui—1]ci, Ae—1,diz—1 = 0))
=0+ X — M1+ E(ugelei, Me—1, di—1 = 1) — E(ug—1]ei, Ai—1,dig—1 = 0)

where

E(yit1 — Yito) = E[E(Yir1|cis Ae) — E(yarolci, At)]
:]E[Ci+)\t+5_ci_>\t] =0

Suppose now that another individual h was not treated at ¢t — 1 nor at ¢. For this control individual, the mean
change in outcome between ¢t — 1 and ¢ is

E(ynt|cn, At, dnt = 0) — E(yne—1]cn, Ae—1,dnre—1 = 0)
=X — Mi—1 + E(unelen, A, dpe = 0) — E(upi—1|cn, Ae—1, dhe—1 = 0)

The difference in these differences is therefore (omitting the conditioning on ¢, \)

E(yit|dne = 1) = E(yir—1]dit—1 = 0)] = [E(ynt|dne = 0) — E(yni—1|dhi—1 = 0)]
=0 + E(uit|dit = 1) — E(upt|dpe = 0) — E(upt—1|dpe—1 = 0) — E(uit—1|diz—1 = 0)

and provided u is mean-independent of d, given (¢, \) — E(u;t|c;, At, dir) = 0 for any (i,t), the analogous sample
means over treated and non-treated individuals will estimate §, the AT E, consistently.

Note that assuming wu;; mean-independent of d;¢, given (¢;, A¢), is a weaker assumption than assuming y;o is
mean-independent of d;; which is what characterizes random assignment of the treatment. The assumption
amounts to assume that y;o is mean-independent of d;; conditional on (c;, A¢).

Differences in differences (DD or diffs-in-diffs) works because the within-individual difference eliminates the
individual effect while the difference in the within-differences eliminates the time effects between the pre- and
post- treatment periods. In Figure 1, we show how the estimator is computed using two individuals (T and C)
and two time periods (before and after treatment). Note that both individuals have the same time trend but
different level effects. The treatment generates a deviation from trend in the treated individual.

Equation (6) resembles a panel data regression where y is regressed on time dummies and on the dummy vari-
able d; while accounting for the individual effect ¢;. We can then estimate 6 by panel data estimators like FD
(First-Difference). This is actually convenient since these estimators will also compute standard errors of the
estimated 4.

An important point to note is that (5) assumes that the time effect ); is the same for the treated and non-treated
individuals. If this is not the case, the diffs-in-diffs approach breaks down. This is commonly referred as the
common trends assumption. In Figure 2 we observe that when the treated individual has no time trend, the
DD estimator will be biased. In the case depicted in Figure 2, DD under-estimates the treatment effect. Thus,
it is important to check how reasonable this assumption is by checking the trend of y in the treated and control
group for periods before the treatment is applied.

This approach can be extended by allowing the non-treatment potential outcome to depend on a vector of
covariates x;;: These covariates may also control for differences in trend between treated and non-treated
individuals. Model (4) is then
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Figure 1: Diffs in diffs with common trends
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T2 observed
Treatment effect
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T2 counterfactual
True TE = (T2-T2counter) = (T2-T1)
Estimated TE = (T2-T1)-(C2-C1)
before after Time(T)
Figure 2: Diffs in diffs with different trends
E(yitolci, At) = B+ ci + A
leading to

Yit = T8+ 0dip + ¢ + N + uy

which is the standard panel regression model.

4.4 Policy changes

In many applications the treatment is a policy change which is applied to all individuals in a given group and we
use group-level data to estimate the casual effect of the treatment. For example, a tax change in state (group)
s is applied to all individuals in state s. In this case, DD is fixed effect estimation applied to aggregate (state

level) data. Potential outcomes Equations (4) and (5) are then

E(ystolcs, Ae) = ¢cs + A¢
E(yst1|cs, M) = E(ystolcs, Ar) + 6
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where ¢, is an individual effect for state s which can be thought of as the mean of ¢; for individuals in state s,
E(¢;)i € s) = ¢s. We then have

Ysto = Cs + )\t + Ust E(ust|csa )\t) =0

Ystl :Cs+)\t+5+ust

leading to the observed outcome

Yst = 6dst + )\t + Cs + Ust (7)

In this type of aggregate analysis we have 2 periods: t = 1 is before the policy change and ¢ = 2 is after the
policy change (we could easily incorporate more periods to the analysis). It is important to have a group that
is treated at t = 2 and another group that is not treated at ¢ = 2. No group is treated at ¢ = 1: Thus, following
the logic of DD we get

[E(ys2|d52 = 1) - E(ysl|ds2 = 0)] - [E(y52|dst = 0) - ]E(ystfl‘dstfl = O)] =94

provided ug; is mean-independent of dg; for all (s,t). We can easily estimate these conditional means from
sample data to obtain an estimate of 4.

Card and Krueger (1994) examine the effect of a raise in the minimum wage on employment. New Jersey
raised its minimum wage on April 1, 1992 from 4.25 to 5.05 dollars per hour. They collected data on wages in
fast-food restaurants for February and for November 1992 for New Jersey and Pennsylvania. Pennsylvania kept
the minimum age at 4.25. Their data are presented in the following table (from Angrist and Pischke,2009)

PA NJ  Difference, NJ-PA

Variable (i) (i) (iii)
1. FTE employment before, 23.33 20.44 —2.89
all available observations (1.35)  (0-51) (1.44)
2. FTE employment after, 21.17 21.03 —0.14
all available observations 0.94)  (0-52) (1.07)

3. Change in mean FTE em- —-2.16 0.59 2.76
(1.25) (0.54) (1.36)

ployment

Figure 3: Average employment per store before and after the rise in New Jersey minimum wage

Note: Adopted from Card and Krueger (1994), Table3. Standard errors shown in paranthese. The sample
consists of all stores with available data on employment. FTE (full-time-equvalent) employment counts each
part-time worker as half a full-time worker. Employment at six closed stores is set to zero. Employment at four
temporarily closed is treated as missing.

The surprising result is that the DD estimator indicated that employment per store increased by 2.76 FTE in
New Jersey as a result of the raise in the minimum wage! This does not make much sense economically. The
problem here might be in the common trends assumption. Maybe employment in Pennsylvania was trending
downward whereas in New Jersey there was no trend?

If this was the case then there is no need for the second differencing and actually subtracting the employment
growth in Pennsylvania from that in New Jersey will make New Jersey look as if its employment was decreasing
by less than it should have been, and we would therefore infer that the minimum wage had a positive effect on
wages. The actual data are represented in Figure 4.

Indeed, employment in NJ between February and April appears flat whereas that in Pennsylvania decreased a
little bit. A better example is given in Angrist and Pischke. The graph below shows grade repetition rates in
German states which experienced a short school year in 1967 and 1968 due to a policy change (24 weeks instead
of 37 weeks), and in Bavaria which did not experience a change in the length of school year.

In this example, the common trend assumption prior to 1967 seems reasonable. We observe a deviation from
trend in the treated states which rapidly disappears after the end of the intervention. Note that (7) resembles
a panel regression model with state and time effects and a dummy variable regressor which varies at the state
and time level. Define
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Figure 4: Employment rates from 1991 to 1997 in NJ and PA. PA 7 counties for urban and PA 14 counties for
urban and rural area.
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Figure 5: Average rates of grade repetition in second grade for treatment and control schools (from Pischke
2007).

T 1 if states s is treated
* 0 if states s is not treated

D — 1 for periods at or after the treatment
"7 )0 for periods before the treatment

Then

dst :Ts X Dt

When there are two periods (7) reduces to

Yst = Dt —+ Cs + (S(TS X Dt) —+ Ust (8)

i.e., there is an interaction term picking up the post-policy change in outcome for the treated states (groups),
which is assumed to be the same for all treated groups.

If there are only two groups, treated and control group, then the regression takes the more familiar from (adding
covariates xgt)

Yst = xstﬂ + Dt +Ts + §(Ts X Dt) + Ust

Swiss Institute of Artificial Intelligence (SIAI) page 12 of 14



L3, SIAI

| R msigence 5 PROPENSITY SCORE MATCHING

This is the most common way in which the causal effect of a policy change in estimated: use group-level data
to run an OLS regression with fixed group and time effects as well as an interaction term. The coefficient on
the interaction term is the ATE.

5 Propensity Score Matching

Define probability of treatment given the covariates. This is called the propensity score:

p(z) = Prob(d = 1|x)

Assume

(a) E(yolz, d) = E(yolx)
(0) E(y:|z, d) = E(y1|z)
() 0<p(z)<1

Assumptions (a) and (b) say that we can identify enough covariates such that the mean outcome, given these
covariates, does not depend on whether treatment occurs. i.e., we can identify ”similar” units just on the
boundary of treatment. Assumption (c) ensures we do not have units that are certain of treatment. These
assumptions are labelled the strong ignorability of treatment (conditional on z).

Then one can prove

_ E(D )y

ATE = T = p@))
 E(D—pa)y

ATE, = Prob(D =1)(1 —p(z))

ATFE and ATFE, are non-parametrically identified once we know the propensity score function. We need to esti-
mate this function to make this approach operational. Parametric approaches are to use Probit or Logit analysis.

Let p(x) = F(x;%) be the predicted propensity score. Then consistent estimators for the treatment effects are

where we note that (N ! Zi\il D;) is a consistent estimator of Prob(D = 1). A popular approach is to identify
the ATE from simple linear regression:

OLS : y;onl,D;,p(x)
The coefficient on D is a consistent estimate of the ATE.
Interpretation: p(s) functions as a control variable that contains all the relevant information in the covariates
that is relevant to whether treatment occurs. Controlling for this information, treatment dummy does not suffer

from endogeneity bias so we can estimate its effect consistently.

Using weaker assumptions that E(yo|p(z)) and E(y1|p(z)) are linear in p(x) rather than not being functions of
x at all, as before, we can estimate ATE from
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OLS :y; on 1, Dy, p(x;), Di(p(xs) — fip)

where fi is the sample average of p(z) : N~! Ef\il p(z;). Again, the coefficient on D is a consistent estimate of
the ATE.
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