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Binary Dependent Variable: The Linear Probability Model
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-
Introduction - Binary Choice Model

® Binary or dummy explanatory variables are often used in regressions.
® In binary choice models, we want to consider the use of dummy
variable as the dependent variable.
® We want to explain a qualitative outcome of y = 0/1 (=no/yes)

® study the question of married women's labor force participation (in the
labor force or out), or
® whether a student is accepted to SIAI.

® How do we interpret population model

y = Bo+ Pix1 + Paxo + ... + Bixk + u

when y is binary? (also called "Boolean" for True/False values in
computer science, named after George Boole, a mathematician)

® y can only change between 0 and 1.
® Suppose 5; = .035 and x; = educ. What does it mean for one year
increase in educ to increase y by 0.357
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-
The Linear Probability Model |

¢ Recall that the standard linear regression model, E(u|x) = 0, yields
E(y|x) = Bo + Bix1 + Baxz + ... + Brxk
® We interpret 3; as
AE(y|x) = B;Ax; holding other regressors fixed

e With y taking only the values 0 and 1,

E(y|x) =0-Pr(y =0|x)+ 1- Pr(y = 1|x)
— Prly = 11

® We will therefore interpret j3; in this case as the effect a regressor has
on the probability that y = 1, holding everything else fixed.
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-
The Linear Probability Model Il

® The use of the multiple linear regression model
y = Bo + fix1 + Baxz + ... + Brxk with E(ulx) =0

in the setting where y is binary (and simply apply OLS), is referred to
as using a linear probability model

® The reason is that it assumes Pr(y = 1|x) is linearly related to the
regressors:
® In other words,

Pr(y = 1|x) = E(y|x)
= fBo + Bix1 + Baxa + ... + Brxk + E(u(x)
= Po + Bix1 + Poxo + ... + Bixk < linearin 8
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-
The Linear Probability Model Il

® Pr(y = 1|x) = p(x) yields the response probability (x denotes all
explanatory variables).

® |n binary choice models, our interest is to evaluate how explanatory
variables can affect the response probability

Pr(y = 1|x) = Bo + Bix1 + fBaxa + ... + Brxk
® Conclude: In the LPM, the parameters have a nice interpretation

APr(y|x) _ 5,
Ax; -
j

® "How does the probability change when x change, ceteris paribus?"
® The partial (marginal) effects are constant (in real world?)
® This means, e.g., in the labour participation example, every extra year
of education affects the probability of participating in the labor market
with the same amount.
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-
The Linear Probability Model 1V

e Using a sample, we can obtain OLS parameter estimates and the
regression line

Y = Bo+ Brx1 + Boxa + .. + Brxi,

® V is the predicted probability that y =1 : Pr(y/;\l\x).

o 30 is the predicted probability when each x; is set to zero (may not
make sense).

° EJ measures the change in the estimated probability of y = 1 when
Ax; = 1 other factors held fixed.

EXAMPLE: Married Women's Labor Force Participation

The variable inlf is one if a woman worked for a wage during a certain year,
and zero if not. (Note: What about married = 0/1 and woman = 0/17)
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-
The Linear Probability Model V

The estimated LPM: n = 753, R? = .264

inlf = 586 — .0034nwifeinc + 038educ+ O396Xper
(152)  (.0015)

— .0006 exper® — 016agef 262kldslt6+ 013k/dsge6
(-00019) (.002)

Heteroskedasticity-robust standard errors in brackets

® Each year of education increases the probability by an estimated .038, or 3.8
percentage points.
® Having young children has a very large negative effect: being in the labor
force falls by .262 for each young child. Reasonable?
® The coefficient on nwifeinc (other sources of income): modest effect
® |f it increases by 20 ($20,000, about one std deviation), the probability of
being in the labor force falls by .068 (6.8 percentage points).
® Past workforce experience has a positive but diminishing effect.
® Years of work experience have diminishing effect, as the squared term has
negative coefficient
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-
Shortcomings of the LPM

® While the LPM is convenient because estimation and interpretation is
easy, it does have some shortcomings.
@ The fitted values from an OLS regression are never guaranteed to
lie between zero and one, yet they represent estimated probabilities.
@® The estimated partial effects are constant ; may lead to silly
estimated effects for large changes.
® For example, take a woman who has no other source of income, 25

years of prior work experience, no children, who is 48 years old. As a
function of educ the equation looks like

inlf = 417 + .038educ

® At educ = 12, the predicted probability is .873, at educ = 14 it is .949,
and at educ = 16, /;F =1.025 > 1.

® For the estimated model to truly represent a probability, the effect of
education should be diminishing [Quadratics are typically limited]

© The LPM exhibits heteroskedasticity - A4 violation (not efficient)
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Shortcomings of the LPM - technical details (Optional for

MBA)

e Why does the LPM exhibit heteroskedasticity?
® Recall with y a binary (0,1) - variable

E(ylx) =0 Pr(y = 0|x) +1- Pr(y = 1|x) = p(x)

¢ What can we say about Var(y|x)?

® Recall: Var(y|x) = E(y?|x) — [E(y|x)]?

* E(y?|x) = 0% Pr(y = 0[x) + 1% Pr(y = 1|x) = p(x)
® Hence

Var(y|x) = p(x) - (1 — p(x))

® Var(y|x) = Var(Bo + Six1 + ... + Bixk + u|x) = Var(u|x)?
® Unless f1 = ... = Bk, we get heteroskedasticity, as the variance of y
depends on x! (related to over-confidence in Machine Learning)

® Thus, OLS will not be BLUE

Data-based Decision Making Lecture 5

October 7, 2021 10 /30



Logit and Probit Models for Binary Choice
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Binary Choice: Functional Specification |

e Rather than assuming p(x) is linear, we may prefer instead to model
the probability directly as

Pr(y = 1|x) = G(So + Bix1 + Paxo + ... + Brxk)

for some function G that takes values between zero and one.
® A natural choice for G(+) is to use a cumulative distribution function.
® When z = By + Six1 + Boxo + ... + Bix is large, the probability of
y = 1 is close to one.

® Two most used cases are
exp(2)

G(z) = Logistic CDF = N(z) = Tt enl)] (logit)

G(z) = Normal(0,1) CDF = ®(z) = /Z exp(f%u2)du (probit)

1
V2T
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Binary Choice: Functional Specification Il

® Both G functions have similar shapes but the logistic is more spread

out.

Probit and Logit Response Functions

1,

0.8

0.6

0.4

0.2

| |— logit: exp(z)/[1 + exp(2)]
—— probit: ®(z), CDF of N(0,1)
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Binary Choice: Functional Specification IlI

® \We may consider the following, non-linear, regression model

y = G(fo + Prxi + Poxa + . + Brxi) + u
where E(ulx) = 0.
® We could then minimize the residual sum of squares (non-linear)

h PR— . . . 2
mbln ;(y, G(bo + b1X,1 =+ b2X,2 + ...+ ka,k))

® Predicted values will always lie between zero and one.
Yi = G(Bo + Brxin + Paxiz + .. + Brxik)

® Would not be efficient, as we still have the heteroskedasticity in the
model - variance changes as x changes

Var(y[x) = G(x)(1 = G(x)) = Pr(y = 1|x)(1 = Pr(y = 1|x))
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-
Logit and Probit - Empirical example |

EXAMPLE: Married Women's Labor Force Participation The variable inlf
is one if a woman worked for a wage during a certain year, and zero if not.

. probit inlf nwifeine educ exper expersq age kidslté kidsge6

Tteration 0: log likelihood =  -514.8732
Iteration log likelihood = -402.06651
Tteration log likelihood = -401.30273
Iteration log likelihood = -401.30219
Iteration 4: log likelihood — =-401.30219

Probit regression Number of obs - 753

IR chi2( 7) = 227.14

Prob > chi2 0.0000

Log likelihood = -401.30219 Pseudo R2 = 0.2206

inlf Coef.  std. Err. z P>z [95% Conf. Intervall

nwifeine -.0120237  .0048398 -2.48 0.013 -.0215096 -.0025378

educ 01309047  .0252542 5.18  0.000 0814074 .180402

exper .1233476  .0187164 6.59  0.000 .0866641 1600311

expersq -.0018871 0006 -3.15  0.002 -.003063 -.0007111

age -.0528527  .0084772 -6.23  0.000 -.0694678  -.0362376

kidslté -.8683285  .1185223 -7.33  0.000 -1.100628 -.636029

kidsge6 .036005  .0434768 0.83 0.408 -.049208 1212179

cons 2700768 508593 0.53 0.595 -.7267473 1.266901
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Logit and Probit - Estimating Partial Effects |

® Important: The parameters estimates provided by probit/logit, B are
not the partial effects.

e Recall: In binary choice models, the partial effect should explain how
each explanatory variable affect the probability that y = 1 holding
everything else constant

® In LPM, where we specified Pr(y = 1|x) linearly

Pr(y = 1|X) = Bo + Bix1 + ... + Brxx

B; does denotes the partial effect of interest.
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-
Logit and Probit - Estimating Partial Effects Il

® In probit/logit model, we specified Pr(y = 1|x) non-linearly (ensuring
restricted between 0 and 1)

Pr(y = 1|x) = G(Bo + Brx1 + ... + Bixk)
® For continuous explanatory variables, the partial effect is given by

op(x) _ 9G(x5)
Ox; B 0x;

= B;jg(xB) (chain — rule)

where x8 = By + S1x1 + ... + Bixk and g(z) = dG(z)/dz

® For explanatory variables that are dummy variables, the partial
effect evaluates the difference in probability of participation when the
dummy variable switches from 0 to 1. Say x; is a dummy variable, then

APr(y = 1|x)

At =G(Bo + Prx1 + ... + Brxk)

— G(Bo + Brx1 + ... + Brxk)
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-
Logit and Probit - Estimating Partial Effects Il

® Unlike in the LPM ; does not have an easy interpretation.

® The sign of j3; does tell us whether the partial effect is positive or
negative (because g(z) > 0), but the magnitude of the partial effect
depends on g(xf).

op(x) _ 9G(xB) _
dx = Bx —5Jg(xﬁ)

® The partial effect is not constant! Depends on x.
® For reporting a partial effect, we consider

@ Partial effect of the average individual (PEA)
@ Average partial effect of all individuals (APE)
© Partial effect of an individual with specific characteristics
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-
Logit and Probit - Estimating Partial Effects IV

e Partial effect of the average individual (PEA)
PEA; = g(Bo + Bix1 + Bako + .. + Bixi) - B;

where X; denotes the average of the jt explanatory variable.
e Average partial effect of all individuals (APE)

— 1

n
APE; = - > &(Bo + Bixin + PaXiz + .. + BiXik) - B
i=1
® Partial effect of an individual with specific characteristics
g(Bo + Brxa + Boko + ... + Brkk) - B
where X; denotes a particular value for the jt explanatory variable.
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-
Logit and Probit - Estimating Partial Effects V

® |If x; is a dummy variable, we can estimate our partial effects using:

PEA; =G(Bo + 1 X 14 BoXo + .. + Bickx)
— G(Bo + Bl x 0+ Bz)_Q + ...+ Bk)_(k)

— 1 n ~ ~ ~ ~
APEy =— > G(Bo+ Br x 1+ Baxiz + ... + Brxik)
i—1

— G(Bo+ B X 0+ Baxia + - + Buxix)

® The APE represents an average treatment effect (ATE). (The
"treatment", x1, is binary.)
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-
Logit and Probit - Estimating Partial Effects VI

e Evaluating marginal effects for the average person has the following
potential problems.

® |f some explanatory variables are discrete, the averages of them

represent no one in the sample (even population)
® E.g., consider dummy variable rural (60% of our sample is rural). What
sense does it make use of 0.6 for rural ?

® [f a continuous explanatory variable appears as a nonlinear function,

how should the averages be obtained?

® E.g., consider variable log(sales). Should we use log(sales) or
log(sales)?
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Logit and Probit

Empirical example |

® The Partial Effect of the Average individual (PEA)

—

APE;

. margins, dydx(*) atmeans

= g(Bo + 31?1 + 32?2 + ...+ Bk?k) : BJ

Cconditional marginal effects Number of obs 753
Model VCE : OIM
Expression Pr(inlf), predict()
dy/dx w.r.t. : nwifeinc educ exper expersq age kidslt6 kidsges
at nwifeinc = 20.12896 (mean)
educ = 12.28685 (mean)
exper = 10.63081 (mean)
expersq 178.0385 (mean)
age = 42.53785 (mean)
kidslte = .2377158 (mean)
kidsge6 1.353254 (mean)
Delta-method
dy/dx  std. Err. z P>z [95% conf. Intervall
nwifeinc -.0046962 .0018903 -2.48 0.013 -.0084012 -.0009913
educ -0511287 -0098592 5.19 0.000 -0318051 -0704523
exper -0481771 -0073278 6.57 0.000 .0338149 -0625392
expersq -.0007371 -0002347 -3.14 0.002 -.001197 -.0002771
age 0206432 .0033079 -6.24 0.000 -.0271265 -.0141598
kidslteé 3391514 .0463581 -7.32 0.000 4300117 -.2482911
kidsgeé .0140628 .0169852 0.83 0.408 .0192275 .0473531
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-
Logit and Probit - Empirical example Il

® The Average Partial Effect of all the individuals (APE)

— ]_ N -~ > n 2 3
APEj = 5 > (o +xi1B1 + xiaBa + .+ X ) - B
i=1

. margins, dydx(*)

Average marginal effects Number of obs = 753
Model VCE : OIM
Expression : Pr(inlf), predict()
dy/dx w.r.t. nwifeinc educ exper expersq age kidslté kidsgeé6
Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]
nwifeinc -.0036162 .0014414 -2.51 0.012 .0064413 .0007911
educ .0393703 .0072216 5.45 0.000 .0252161 .0535244
exper .0370974 .0051522 7.20 0.000 .0269993 .0471956
expersq -.0005675 .0001771 -3.20 0.001 .0009146 .0002204
age -.0158957 .0023587 -6.74 0.000 .0205186 .0112728
kidslté -.2611542 .0318597 -8.20 0.000 .3235982 .1987103
kidsge6 .0108287 .0130584 0.83 0.407 .0147654 .0364227
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-
Logit and Probit - Empirical example IlI

® Recall, in Linear Probability Model (LPM)

inlf = 586 — .0034nwifeinc + .038educ + ... — .262kidslt6 + ..

® For every additional young child, labor force (LF) participation
decreases with 26.2 percentage points.
® Reasonable?

e As discused, in probit/logit model, the marginal effects are not
constant

® Indeed, they do permit the largest effect on LF participation to be
associated with first child.
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-
Logit and Probit - Empirical example IV

e Compare the predicted LF participation for the average person with
different numbers of young children:

Pr(infl = 1|X, kidslt6 = 0)

= ®(.27 — .012nwifeinc + .131leduc + ... — .868 - 0 + ..) = .707
Pr(infl = 1|%, kidslt6 = 1)

= &(.27 — .012nwifeinc 4+ .131leduc + ... — .868 - 1 + ..) = .373
Pr(infl = 1|X, kidslt6 = 2)

= ®(.27 — .012nwifeinc + .131leduc + ... — .868 - 2 + ..) = .117

® The first young child reduces the LF participation with 33.4 percentage
points.

o Pr(infl = 1|x, kidslt6 = 1) — Pr(infl = 1|, kidslt6 = 0) = —.334

® The second young child reduces the LF partipation with 25.6
percentage points.

e Pr(infl = 1|%, kidslt6 = 2) — Pr(infl = 1|%, kidslt6 = 1) = —.256

e Effect is not constant: The biggest effect of having young children is
the first one!
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Hypothesis Testing: Probit/Logit Model
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Testing single linear restriction: z-test

¢ How do we test a null hypothesis?
® Example: Hy: B> =1, against Hy : B # 1 L
® Your regression output provides parameter estimates (1, 32, ...) and
their SE's.
® Test statistic:

o~

b —1
SE(p2

=@

< N(0,1) under Hy

zZ =

~—

® Reject Hy if |z| > 1.96 at the 5% level of significance.
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Testing multiple linear restriction: F-test

® How do we test multiple linear restrictions?
® Example: Hy: 8> =0 and 83 = 0, against Ha : 8> # 0 and/or 83 # 0
® OLS: Recall we used the F test for multiple linear restrictions
® |n this test, you compared the restricted residual sum of squares
(RRSS) with the unrestricted residual sum of squares (URSS) (or
equivalently R with Rig).
® Made sense, because the OLS attempts to minimize the residual sum of
squares (test loss of fit)

® Goes back to F-test
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-
Example "Chow" Test

® Extension: How can we test whether the labor market participation
for women is the same for urban (city = 1) as it is for rural women

(city = 0).
® We want to test:
Ho : B[ = BI™an for all j = 0,1, ..., k
Hi : At least one ,8}“""‘/ #+ ﬁj”b"’"

® \We have k + 1 restrictions we want to test (intercept + slopes)
® f[-test stat

(RRSS — URSS)/(k + 1)
URSS/(n— 2(k + 1))

F:

® Reject Hy if F-test stat crosses the critical value
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-
Example "Chow" Test

® Restricted model

® The LF participation decision is the same for urban and rural women
® To obtain RRSS , we simply perform probit (logit) using all
observations
® Unrestricted model

® The LF participation for rural and urban women are different
® To obtain URSS we can run separate probit (logit) regressions for the
urban and rural sample

® From here we compute URSS = RSS,/pan + RSS,ural
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