Hypothesis Testing in the Multiple regression
model

Testing that individual coefficients take a specific value such as
zero or some other value is done in exactly the same way as
with the ssimple two variable regression model.

Now suppose we wish to test that a number of coefficients or
combinations of coefficients take some particular value.

In this case we will use the so called “ F-test”



Suppose for example we estimate a model of the form

Y, =a+b X, +b, X, +b;X;; +b, X, + b X5 +U,

We may wish to test hypotheses of the form { HO: b,=0 and
b2=0 against the alternative that one or more are wrong} or

{HO: b;=1 and b,-b,=0 against the alternative that one or more
arewrong} or {HO: b,+b,=1 and a=0 against the alternative that
one or more are wrong}

Thislectureisinference in this more general set up.

We will not outline the underlying statistical theory for this. We
will just describe the testing procedure.



Definitions

« TheUnrestricted Model: Thisisthe model without any of the
restrictions imposed. It contains all the variables exactly asin
the regression of the previous page

« TheRestricted Model: Thisisthe model on which the
restrictions have been imposed. For example all regressors
whose coefficients have been set to zero are excluded and any
other restriction has been imposed.




Example 1

* Suppose we want to test that :HO: b,=0 and b2=0 against the
alternative that one or more are wrong in:

Y, =a+b X, +b, X, +b,X,; +b, X, +b; X5 +u

e Theaboveisthe unrestricted model

e TheRestricted Modéd would be

Y, =a+b,X;; +b, X, +b; X5+,



Example 2

Suppose we want to test that : H,: b;=1 and b,-b,=0 against the
alternative that one or more are wrong :

Yo =a+h X, +b, X, +b, X5 +0, X, + B X5 + U,

The above isthe unrestricted model
The Restricted M odel would be

Yi =a+t Xil +b2Xi2 _bzxis +b4Xi4 +b5Xi5 T U

Rearranging we get amodel that uses new variables as functions
of the old ones:

(YI - Xil) =a+t bZ(XiZ - ><i3) t b4Xi4 +b5xi5 T ui



Inference will be based on comparing the fit of the restricted and
unrestricted regression.

The unrestricted regression will alwaysfit at least aswell as
therestricted one. The proof is simple: When estimating the

model we minimise the residual sum of squares. In the
unrestricted model we can aways choose the combination of
coefficients that the restricted model chooses. Hence the
restricted model can never do better than the unrestricted one.

So the question will be how much improvement in the fit do we
get by relaxing the restrictions relative to the |oss of precision
that follows. The distribution of the test statistic will give usa
measure of this so that we can construct adecision rule.



Further Definitions

Define the Unrestricted Residual Residual Sum of Squares (URSS)
astheresidual sum of squares obtained from estimating the
unrestricted model.

Define the Restricted Residual Residual Sum of Squares (RRSS) as
the residual sum of sgquares obtained from estimating the restricted
model.

Note that according to our argument above RRSS > URSS

Define the degr ees of freedom as N-k where N is the sample size and
k isthe number of parameters estimated in the unrestricted modd (1.e
under the alternative hypothesis)

Define by q the number of restrictions imposed (in both our examples
there were two restrictions imposed



he F-Statistic

The Statistic for testing the hypothesis we discussed is

= (RRSS-URSS) /g
URSS/(N - K)

The test statistic is always positive. We would like thisto be
“small”. The smaller the F-statistic the less the loss of fit dueto
the restrictions

Defining “small” and using the statistic for inference we need to
know its distribution.



The Distribution of the F-statistic

 Asinour earlier discussion of inference we distinguish two
Cases.

Normally Distributed Errors

— Theerrorsin the regression equaion are distributed
normally. In this case we can show that under the nulll
hypothesis H, the F-statistic is distributed as an F
distribution with degrees of freedom (g,N-K) .

— The number of restrictions g are the degr ees of freedom of
the numerator.

— N-K are the degr ees of freedom of the denominator.




Since the smaller the test statistic the better and since the test
statistic is alwayg positive we only have one critical value.

For atest at the level of significance we choose acritical
value of Fl—a,(q,N—k)

If the test statistic is below the critical value we accept the null
hypothesis.

Otherwise we rgject.



Examples

« Examplesof Critical valuesfor 5% tests in aregression model
with 6 regressors under the aternative

— Sample size 18. One restriction to be tested: Degrees of
freedom 1, 12: Fioos,12) = 470

— Sample size 24. Two restrictions to be tested: degrees of
freedom 2, 18: Fi 005,218 = 3-95

— Sample size 21. Threerestrictions to be tested: degrees of
freedom 3, 15: Fi0.05(315) = 3:29



| nference with non-normal errors

* When the regression errors are not normal (but satisfy all the

other assumptions we have made) we can appeal to the central
limit theorem to justify inference.

* |Inlarge samples we can show that the g timesthe F statistic is
distributed as arandom variable with a

a

2
gF ~ X distribution



Examples

Examples of Critical values for 5% tests in aregression model
with 6 regressors under the aternative. Inference based on large
sampl es:

— Onerestriction to be tested: Degrees of freedom 1. :
2 —_
/Y1—0.05,1 - 384

— Two restrictions to be tested: degrees of freedom 2:
2 —
X002 = 2.9

— Three restrictions to be tested: degrees of freedom 3:
2 —_
Xi-00s3 = (.81



Example: The Demand for butter:

Hypothesisto be tested: Butter and margarine advertising do not change
demand and income elasticity of butter isone: Threerestrictions

Unrestricted Model

. regr lbp Ipbr [psmr Iryae Itba Irma

Source |
_____________ A o

Model | .357443231

5 .071488646

Residual | .273965407 45 .00608812

_____________ O

Total | .631408639 50 .012628173

log butter purchases lbp |
_____________ A e
log price of butter Ipbr |
log price of margarine lpsmr |
log real income Iryae |

log butter advertising
log margarine advertising

Constant _cons |

-.7297508

(795654
9082464

ltba | -.0167822
Irma | -.0059832

6.523365

Number of obs = 51

F(5 45)= 11.74

Prob>F = 0.0000

R-squared = 0.5661

Adj R-squared = 0.5179

Root MSE = .07803
Std. Err t P>|t| [95% Conf. Interval]
1540721 -4.74 0.000 -1.040068 -.4194336
3205297 2.43 0.019 .1339856 1.425145
510288 1.78 0.082 -.1195263 1.936019
0133142 -1.26 0.214 -.0435984 .0100339
0166586 -0.36 0.721 -.0395353 .027569
.8063481 8.09 0.000 4.899296 8.147433



Restricted M odel

lbp = a+ blpbr + b,lpsmr +1xIryae + OxlItbha + OxIrma + u

(lbp —Iryae ) = a + b,lpbr + b,lpsmr +u
. gen lbpry=Ilbp-Iryae

. regr lbpry Ipbr [psmr

Source | SS df MS Number of obs = 51
------------- o F( 2, 48)= 43.74
Model | .523319203 2 .261659601 Prob>F = 0.0000
Residual | .287162961 48 .005982562 R-squared = 0.6457
------------- Femmmmmmeeme oo Adj R-squared = 0.6309
Total | .810482164 50 .016209643 Root MSE = .07735
New dep var Ibpry |  Coef. Std. Err. t P>|t|] [95% Conf. Interval]
_____________ A
log price of butter lpbr | -.7481124 .14332 -5.22 0.000 -1.036277 -.4599483

log price of margarine lpsmr | .782316 .2466846 3.17 0.003 .2863234 1.278309
Constant _cons| 6.255797 .5969626 10.48 0.000 5.055523 7.456071



The Test

 Thevaue of thetest statistic is

_ (0287 -0.274)/3 _ .

0.274 /(51 - 6)

o Thecritical value for a 5% test wit (3,45) degrees of freedom is

2.81

o We accept the null hypothesis since 0.71<2.81.




A Large sample example: Testing for seasonality in
fuel expenditure

. regress wfuel logex spring summer autumn

Source | SS df MS Number of obs = 4785
+ F( 4, 4780) = 100.33
Model | .549215033 4 .137303758 Prob>F = 0.0000
Residual | 6.54124051 4780 .00136846 R-squared = 0.0775
+ Adj R-squared = 0.0767
Total | 7.09045554 4784 .001482119 Root MSE = .03699

Share of Fuel in budget wfuel| Coef. Std.Err. t P>|t] [95% Conf. Interval]
+
Log real Expenditure logex | -.0116965 .0007125 -16.42 0.000 -.0130934 -.0102996
spring | .0064453 .0015151 4.25 0.000 .0034751 .0094155
summer | -.0020176 .0015453 -1.31 0.192 -.005047 .0010118
autumn | -.0099518 .001524 -6.53 0.000 -.0129396 -.0069641
_cons| .1167705 .003095 37.73 0.000 .110703 .1228381




The Restricted Modd : Excludes the Seasonal |ndicator

. regress wfuel logex

Source | SS df MS Number of obs = 4785
------------- o F( 1, 4783) = 270.14
Model | .37905073 1 .37905073 Prob>F = 0.0000
Residual | 6.71140481 4783 .001403179 R-squared = 0.0535
------------- B e LR Adj R-squared = 0.0533
Total | 7.09045554 4784 .001482119 Root MSE = .03746

Share of Fuel in budget wfuel | Coef. Std. Err. t P>|t] [95% Conf. Interval]

_____________ A o e
log real expenditure logex | -.0118527 .0007211 -16.44 0.000 -.0132665 -.0104389

Constant _cons| .1160574 .0030032 38.64 0.000 .1101697 .1219451

The Chi sguared test statistic: (6.71- 6.54)/(6.54/4785)= 124.38
Critical Value for 5% test and three degrees of freedom 7.81
Hypothesis rejected since 124.38>7.81




Alternative form of the F-dtatistic using the R
squared

e Solong asthe Total sum of squaresis kept the same between
models we can also write the F-statistic as

- _ _(R§ - Rg)/qg
(1- RZ)/N - k)

 where U refersto the unrestricted model and R to the restricted
model

e Thiswill not work if we compute the R squared with different
dependent variables in each case (e.g. because of
transformations.




Heteroskedasticity

Heteroskedasticity means that the variance of the errorsis not
constant across observations.

In particular the variance of the errors may be a function of
explanatory variables.

Think of food expenditure for example. It may well be that the
“diversity of taste” for food is greater for wealthier people than
for poor people. So you may find a greater variance of
expenditures at high income levels than at low income levels.



Heteroskedasticity may arise in the context of a*“random
coefficients model.

Suppose for example that a regressor impacts on individualsin a
different way

Y, =a+ (b +e&)X;,; +uy

Y.

at+b X, +&X.,+uU



« Assume for simplicity that a and u are independent.
« Assumethat aand X are independent of each other.
* Then the error term has the following properties:

E(g, X, +U, | X) = E(& X, | X)+E(U, | X) = E(& | X)X, =0

Var(g X, +u | X) =Var(g X, | X) +Var(u | X) = X?0,” +0°

2 . . o
« Where O, isthevarianceof a



Implications of Heteroskedasticity

e Assuming all other assumptions are in place, the assumption
guaranteeing unbiasedness of OLSisnot violated.
Consegquently OL Sis unbiased in this model

 However the assumptions required to prove that OLS is efficient
are violated. Hence OL Sis not BL UE in this context

* We can devise an efficient estimator by reweighing the data
appropriately to take into account of heteroskedasticity



