
1 ENDOGENEITY

1 Endogeneity

Consider the following model in the population,

y = β1 + x2β2 + ...+ xkβk + u = xβ + u (9)

Above equation requires classical A1-A4 assumptions to be identified, or at least to find the consistent estimator,
β. An explanatory variable xj is said to be endogenous if,

E(xju) 6= 0 (10)

That is, a regressor is endogenous if it is correlated with the error u. If xj is uncorrelated with u, we
say that xj is exogenous.

If a regressor is endogenous then b, the OLS estimator of β, is not consistent. It is important to under-
stand that endogeneity of a single regressor usually makes the OLS estimator of all k parameters inconsistent.

The extent to which this occurs depends on the correlation between the endogenous variable and the other
regressors. Suppose the last regressor, xk, is endogenous, E(xku) 6= 0, but the others are exogenous. Examining
the OLS consistency proof we arrive at:

plimb = β + (plim
X ′X

n
)−1plim

1

n
X ′U

= β + [E(x′x)]
−1
E(x′u)

= β + [E(x′x)]
−1


 0

...
E(xku)




So unless the first k − 1 elements in the kth column of [E(x′x)]
−1

are zero, endogeneity of xk affects the plim
of the other coefficient estimators.

This definition of endogeneity / exogeneity implies that we are concerned only with the consistency of the
OLS estimator. Exogeneity implies consistency but not unbiasedness of OLS.

In some textbooks, you might find a more strict definition of exogeneity, namely that E(u|xj) = 0 and, in
this case, an exogenous regressor would also imply unbiasedness of OLS. Notice also that the definition of endo-
geneity / exogeneity refers to a specific model: xj can be exogenous in one equation but endogenous in another.
Endogeneity cannot be tested directly. Condition E(xj · u) = 0 is not directly verifiable because u is not ob-
served. Using the OLS residuals instead of u is pointless because the residuals û are always orthogonal to xj
by construction - Σni=1ûixij = 0 for any j = 1, ..., k - regardless of the correlation between u and xj .

However, with additional information (on instrumental variables) we can design specification tests which test
for E(xju) = 0, which will be discussed later in this note. In applications, endogeneity usually arises in one of
three ways:

1. Omitted variables

2. Measurement error

3. Simultaneity

1.1 Omitted Variable Bias (OVB)

Suppose theory tells us that the relevant object of study is the conditional expectation of y given two variables x
and q. For some reason, we omit q from the regressions. How is the OLS estimator of the coefficient of x affected?
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Why would we omit q from the regression if theory tells us to include it? The typical reason is either that we
lack data to measure it or because the variable is intrinsically unmeasurable. For example, when estimating the
effect of schooling on wages using household data we would like to control for the effect of the firm in which the
individual works because firms may have different wage policies.

Unfortunately, household data sets do not carry information on the employing firm. We would also like to
control for the individual’s ”natural ability” since it certainly affect wages but ability is intrinsically unobserved
and, possibly, unmeasurable. Let the model be

E(y|x1, ..., xk, q) = β1 + x2β2 + ...+ xkβk + γq (11)

where q is the variable that will be omitted from the regression. We are interested in the β
′

js, which are the
partial effects of the observed explanatory variables holding the other explanatory variables constant, including
the unobservable q.
Model above in error form is,

y = β1 + x2β2 + ...+ xkβk + γq + v, E(v|x1, x2, ..., xk, q) = 0 (12)

If we regress y on the observable variables only we are, in effect, putting the unobservable q into the error term,

y = β1 + x2β2 + ...+ xkβk + u u ≡ γq + v (13)

Now, v has zero mean and is uncorrelated with all the x
′

js (and q). v is sometimes called the structural error.
We can also assume E(q) = 0 because an intercept is always included in the regression. Thus, E(u) = 0.

But for u to be uncorrelated with each regressor x1, ..., xk, it must be that q is uncorrelated with each of
them. If q is correlated with any of the regressors, then so will u be and we have an endogeneity problem: OLS
would not be estimating β consistently.

To understand this omitted variable bias, denote the best linear projection of q onto x by

L(q|x) = xδ δ = [E(x′x)]
−1
E(x′q)

We can therefore write

q = δ1 + δ2x2 + ...+ δkxk + r (14)

where, by definition of a linear projection, E(r) = 0, and Cov(xj , r) = 0 for each j = 1, ..., k. Then,

y = (β1 + γδ1)︸ ︷︷ ︸
π1

+ (β2 + γδ2)︸ ︷︷ ︸
π2

+...+ (βk + γδk)︸ ︷︷ ︸
πk

+γr + v (15)

The error term in this equation, γr + v, is uncorrelated with all the regressors. That is, the x’s are exogenous
in this equation, so OLS consistently estimates the coefficients of this regression. Thus, OLS estimator of the
coefficients in the model excluding q - which we denote by b∗ - would consistently estimate the parameter π and
not β, namely

plimb∗j = βj + γδj = πj (16)

which says that the OLS estimator estimates the direct effect of xj on y plus an indirect effect amounting to
the effect of xj on the unobserved q times the effect of q on y, i.e., γδj .

If we suspect that a relevant variable q is omitted from the specification, then it is not surprising that some
regressors are endogenous.
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The intuition behind is that these regressors may be the result of choices made by individuals or firms and
these choices may also be affected by q (which is known to the individual or firm but is not observed by the
researcher). In this case, a correlation between the included and excluded variables results (e.g., schooling and
ability, inputs and managerial qualities, etc.).

We can use above equation to get an idea of the direction of the bias γδj , if not its magnitude. Usually we do

have a good prior about the sign of γ. However, in attempting to sign the δ
′

js we should remember that it is
not enough to have an idea about the sign of the simple correlation coefficient between q and xj ; δj refers to
the partial correlation between q and xj .

The only two cases in which omitting a variable has no effect on the OLS estimates of the included variables
are:

1. When the omitted variable has no effect on y, i.e., γ = 0 so that q is not really an omitted variable. We
say that q is not relevant.

2. When the omitted variable is orthogonal to the included variables. That is when E(x′q) = 0 because this
implies δ = 0.

For completeness, we now show the relationship between the OLS estimator in the regression when q is included
(sometimes referred to as the ”long” regression) and the OLS estimator from the regression when q is excluded
(the ”short” regression).

To do this we write Y = Xb+Qγ̂+ V̂ , where Q is the n× 1 vector of observations on q, (b′, γ̂) is the (k+ 1)× 1
OLS estimator and V̂ is the n× 1 vector of OLS residuals in the long regression. Now, regressing Y on X only
(the sort regression) gives

b∗ = (X ′X)−1X ′Y = (X ′X)−1X ′(Xb+Qγ̂V̂ )

= b+ (X ′X)−1X ′Qγ + (X ′X)−1X ′V̂

= b+ δ̂γ̂

because X ′V̂ = 0 by construction, and δ̂ = (X ′X)−1X ′Q is the k×1 vector of OLS estimators of the coefficients
in the linear projection of q on x1, ..., xk(see equation (14)). This relationship is the sample counterpart of (16).

The estimates of the ”short” regression estimate the direct (partial) effect of x on y plus the indirect effect on
y that operates through the correlation between x and q. Clearly b∗ is inconsistent,

plimb∗ = β + δγ ≡ π (17)

which is equal to (16).

1.1.1 Proxy Variables

The effect of omitting a relevant variable can be reduced if we have a proxy variable for the unobserved variable
q. A proxy variable z should satisfy two requirements.

1. E(y|x, q, z) = E(y|x, q) (18)

2. L(q|x, z) = L(q|z) = θ0 + θ1z (19)

Condition 1 means that z does not play a role in explaining y once x and q have been controlled for. This is not
a strong assumption since q, and not z, is what affects y (otherwise z would be part of x). In the wage-education
example, let q be ability and z be an IQ test score. The model says that it is ability that affects wages; the IQ
score should not matter for wages give ability.
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Condition 2 is more important and says that q is not correlated with x once we partial out (account for)
z. That is the BLP of q on (z, x) in error form is,

q = θ0 + θ1z + r (20)

with E(r) = 0 and Cov(z, r) = 0 by definition. Condition 2 assumes, in fact, that z accounts for all the possible
correlation between q and the x’s,

Cov(xj , r) = 0 j = 1, ..., k

To see how using the proxy z instead of q affects the estimated coefficients we replace q above to get an estimable
equation.

y = (β1 + γθ0) + x2β2 + ..., xkβk + γθ1z + (v + γr)

The composite error u ≡ v + γr is uncorrelated with the regressors under the assumptions made. Condition 1
ensures that z is uncorrelated with v while z is uncorrelated with r by construction. The x

′

js are uncorrelated
with r. Thus, we know that the OLS regression,

y on 1, x2, ..., xk, z (21)

gives consistent estimators of

(β1 + γθ0), β2, ...., βk, γθ1

We can estimate β consistently if we use proxy variables (except for β1 and γ). If one of the x
′

js, say xk, does
not satisfy condition 2 then,

q = θ0 + λkxk + θ1z + r (22)

Therefore the model can estimate

(β1 + γθ0), β2, ..., (βk + γλk), γθ1

consistently.

1.1.2 Optional: Omitted Variable Effect on Variances

Sometimes it is useful to know which estimator - the one based on the longer regression or the one based on
the shorter regression - has a smaller variance. This is not a very interesting question since we are comparing
a consistent estimator with an inconsistent one, but something useful will come out from this exercise.

Recall that the variances of b and b∗ can be written as

V (b|X,Q) = σ2(X ′MqX)−1 Mq = I −Q(Q′Q)−1Q′

V (b∗|X,Q) = σ2(X ′X)−1

where Q is the n × 1 vector of observations on q. We condition on X and Q to ensure that σ2 = V (v|x, q) is
the same in both expressions. This implies

V (b|X,Q)− V (b∗|X,Q) = σ2
[
(X ′MqX)−1(X ′X)−1

]
In order to evaluate the sign - in a matrix sense - of this expression we appeal to the following result. Let A, B
be two positive definite matrices. If B −A is positve definite then so is A−1 −B−1. In our case, both matrices
in question are positive definite and

V (b∗|X,Q)−1︸ ︷︷ ︸
B

−V (b|X,Q)−1︸ ︷︷ ︸
A

= σ−2 [(X ′X)− (X ′MqX)]

= σ−2X ′(I −Mq)X

= σ−2X ′Q(Q′Q)−1Q′X
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Now,

X ′Q(Q′Q)−1Q′X =
X ′QQ′X

Q′Q

where Q′Q = Σni=1q
2
i is a positive scalar and the numerator is clearly a positivie definite matrix. Then

V (b∗|X,Q)−1 − V (b|X,Q)−1 is positive definite and therefore so is V (b) − V (b∗), or V (b) − V (b∗) in a ma-
trix sense.

The conclusion is that the OLS estimator of β in the long regression has a ’larger’ covariance matrix
than in the short regression.

Consider the particular case, y = α+ βx+ γq + v. The regressors are a constant, the scalar x and the omitted
variable q. Let Sxx = Σni=1(xi − x̄)2. It is well known that in the short regression - the regression excluding q -
the variance of b∗ is

V (b∗|x, q) =
σ2

Sxx

while the variance of b in the long regression (including x and q) is

v(b|x, q) =
σ2

Σni=1ε̂
2
t

=
σ2

Sxx(1−R2
xq)

where ε̂ is the OLS residual in the regression of x on (1, q) and R2
xq is the R2 from that regression, R2

xq =

1 − Σn
i=1ε̂

2
t

Sxx
. Because 0 ≤ R2

xq ≤ 1, the variance in the long regression is larger than the variance in the short
regression. The higher the correlation between x and q, the larger the variance of b.

The upshot of this discussion is that omitting relevant variables produces biased estimators, but with a variance
that is no larger than the one obtained from the long regression.

1.1.3 Optional: Inclusion of “Irrelevant” Regressors

Suppose that the true model is

E(y|x− 1, ..., xk, q) = β1 + x2β2 + ...+ xkβk + γq

but now γ = 0. That is, we assume in fact that E(y|x, q) = xβ, the variable q is irrelevant or ignorable in this
model. Nevertheless we regress y on x and on q.

There is no problem with inclduing the irrelevant variable q. Our estimate of γ, the coefficient of q should be
close to zero. Indeed, we know that E(γ̂) = 0 because we know that in this particular case, the value of γ
happens to be zero. σ2 is also an unbiased estimator of σ2.

Hence, there is nothing wrong with the inclusion of irrelevant variables in terms of bias. We simply are not
using some correct information about the value of γ. In contrast, when omitting relevant variables, we impose
incorrect information into our estimation, i.e., we assume that γ = 0 when this is in fact not true.

Nevertheless, there should be something that stops us from adding variables to the regression model. Other-
wise, we should just keep adding regressors. As seen, the cost to adding irrelevant regressors is in terms of the
precision the estimator: the variance of the estimator when q is included is larger than when q is omitted.

1.2 Measurement Errors

The data are usually measured with errors. Even though these errors may average to zero, the OLS estimator
will be inconsistent when errors of measurement are present. To see this point let us analyze a simple model
using a single regressor

y = α+ βx∗ + v E(v|x∗) = 0 (23)
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but the true regressor x∗ is not observed, so that this equation cannot be estimated.
Instead we observe x, where

x = x∗ + ε E(ε|x∗) = 0 (24)

ε is the measurement error, and therefore we say that x∗ is measured with error. In the classical error-in-variables
(EIV) formulation, it is assumed that (

εi
vi

)
∼ iid

(
0,

(
σεε 0
0 σvv

))
In order to understand the effect of using x instead of x∗, we replace x∗ with x to obtain an estimable equation,

y = α+ β(x− ε) + v

= α+ βx− βε+ v

= α+ βx+ u, u = v − βε (25)

Hence,

E(xu) = E(x∗ + ε)(v − βε) = −βσεε 6= 0

in general.
Thus, x is endogenous and OLS would not give a consistent estimator of β. Note that the error-in-variables
problem can be interpreted as an omitted variable case: If we add ε to the regression then the problem would
disappear. In other words, if we observe the measurement error then we can recover the true regressor.

Recall that the OLS estimator of b is b = β +
Σn

i=1(xi−x̄)ui

Σn
i=1(xi−x̄)2 . The plim of b is obtained as follows:

plimb = β
plim 1

nΣni=1(xi − x̄)ui

plim 1
nΣni=1(xi − x̄)2

= β +
Cov(x, u)

V (x)

= β − βσεε
V (x∗) + σεε

= β(
V (x∗)

V (x∗) + σεε
)

Note that inthis case the OLS estimator underestimates the true parameter if β > 0, and overestimates β if
β < 0. so it is generally said that classical EIV makes the OLS estimator to be ”attenuated” towards zero.
This is a powerful result because we not only know that the OLS estimator is inconsistent but also the direction
of the in consistency. In this case, the bias or inconsistency depends on the ratio of error variance to true variance.

Sometimes there is confusion between the EIV formuatlion and the specification of x as a proxy variable
for x∗ (which is unobserved). Recall that a proxy variable x satisfies x∗ = θ0 + θ1x+ r and Cov(x, r) = 0.

The proxy x and the error r are uncorrelated, but in the EIV model x and the error ε are correlated. What
differentiates the two cases is the assumed correlation between the observed variable and an error term that is
added to the structural error term of the regression (and not whether x is on the left hand side or the right
hand side of an equation).
In the event that there are more regressors in the regression (with or without measurement errors), the general
result is that all the estimators are potentially inconsistent, even if just only one variable is badly measured.
The OLS estimator of the mismeasured regressor is still attenuated towards zero, but it is harder to sign the
direction of the bias in the other (correctly measured) variables as this depends on the correlation between the
regressors. What is important to remember is that measurement error in one variable can potentially contami-
nate the estimators of the coefficients of all other variables.

Exercise: Consider the case of the dependent variable being measured with error, y = y∗ + δ where y∗ is true
value, but we observe it with error η.Are there conditions on η under which OLS is consistent? What are they?
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1.3 Simultaneity

Simultaneity arises when at least one of the explanatory variables is partially determined by y. If, say, xk is
determined partly as a function of y, then we will show that this usually induces a correlation between xk and
u, which makes xk endogenous in the regression for y.

For example, if y is a city’s crime rate and xk is the size of its police force, size of the police force is partly
determined by the crime rate. If the amount of labor determines production but production also determines
the demand for labor, then both production and labor are simultaneously determined.
Suppose the equation of interest is

y = xβ + u (26)

but the last regressor is partly determined by y (and other regressors z which can also include the other k − 1
number of x′s),

xk = αy + zδ + ε (27)

Is xk uncorrelated with u? Guess increasing u. This increase in u increases y directly through the first structural
equation. But an increase in y also affects xk through the other structural equation, when α 6= 0. Thus, u and
xk will be correlated when y helps to determine xk. This is the simultaneity problem. Below is an example for
Supply and Demand.

Example 1.

D: q = yβ + αp+ uD

S: p = wγ + δq + uS

Assume that E(uD) = E(uS) = 0 and that E(uDy) = E(uSy) = 0 and E(uDw) = E(uSw) = 0. That is y
(income) and w (wage) are exogenous in both the demand and supply equations. We will show that the price
regressor (p) in the demand eqution is endogenous.

E(pud) = E
[
(wγ + δq + uS)uD

]
=δE(quD) + E(uSuD)

=δE
[
(yβαp+ uD)uD

]
+ E(uSuD)

=δE(puD) + δV (uD) + Cov(uS , uD)

=E(puD) =
δV (uD) + Cov(uS , uD)

1− δα
6= 0

even if the demand and supply errors (shocks) are uncorrelated. It is as easy to show that the quantity regressor
in the supply equation is also endogenous.
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