
1 ENDOGENEITY

1 Endogeneity

Consider the following model in the population,

y = β1 + x2β2 + ...+ xkβk + u

= xβ + u

Above equation requires classical A1-A4 assumptions to be identified, or at least to find the consistent estimator
of β, notation of which often comes with hat, β̂. An explanatory variable xj is said to be endogenous if,

E(xju) 6= 0

That is, a regressor is endogenous if it is correlated with the error u. If xj is uncorrelated with u, we
say that xj is exogenous. More specifically, we call this a violation of A3Rsru

If a regressor is endogenous then β̂, the OLS estimator of β, is not consistent. It is important to under-
stand that endogeneity of a single regressor usually makes the OLS estimator of all k parameters inconsistent.
In other words, if one regressor is endogenous, unless all regressors are orthogonal to each other, any type of
regression, be it linear multivariate to factor analysis, or even computer-based machine learning models.

The extent to which this occurs depends on the correlation between the endogenous variable and the other
regressors. Suppose the last regressor, xk, is endogenous, E(xku) 6= 0, but the others are exogenous. Examining
the OLS consistency proof we arrive at:

plimβ̂ = β + (plim
X ′X

n
)−1 plim

1

n
X ′U

= β + [E(x′x)]
−1
E(x′u)

= β + [E(x′x)]
−1


 0

...
E(xku)




So unless the first k − 1 elements in the kth column of [E(x′x)]
−1

are zero, endogeneity of xk affects the plim
of the other coefficient estimators.

This definition of endogeneity / exogeneity implies that we are concerned only with the consistency of the
OLS estimator. Exogeneity implies consistency but not unbiasedness of OLS.

In some textbooks, you might find a more strict definition of exogeneity, namely that E(u|xj) = 0 or A3Rmi
and, in this case, an exogenous regressor would also imply unbiasedness of OLS. Notice also that the definition
of endogeneity / exogeneity refers to a specific model: xj can be exogenous in one equation but endogenous in
another.

Endogeneity cannot be tested directly. Condition E(xju) = 0 is not directly verifiable because u is not ob-
served. Using the OLS residuals instead of u is pointless because the residuals û are always orthogonal to xj
by construction - Σni=1ûixij = 0 for any j = 1, ..., k - regardless of the correlation between u and xj .

However, with additional information (on instrumental variables) we can design specification tests which test
for E(xju) = 0, which will be discussed later in this note. In applications, endogeneity usually arises in one of
three ways:

1. Omitted variables

2. Simultaneity

3. Measurement error

In this class, we focus on measurement errors.
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2 MEASUREMENT ERROR DEFINITIONS

2 Measurement Error definitions

The data are usually measured with errors. Even though these errors may average to zero, the OLS estimator
will be inconsistent when errors of measurement are present. To see this point, let us analyze a simple model
using a single regressor

y = α+ βx∗ + v E(v|x∗) = 0

but the true regressor x∗ is not observed, so that this equation cannot be estimated.
Instead we observe x, where

x = x∗ + ε E(ε|x∗) = 0

ε is the measurement error, and therefore we say that x∗ is measured with error. In the classical error-in-variables
(EIV) formulation, it is assumed that (

εi
vi

)
∼ i.i.d.

(
0,

(
σεε 0
0 σvv

))
In order to understand the effect of using x instead of x∗, we replace x∗ with x to obtain an estimable equation,

y = α+ β(x− ε) + v

= α+ βx− βε+ v

= α+ βx+ u, u = v − βε

Hence,

E(xu) = E(x∗ + ε)(v − βε) = −βσεε 6= 0

in general.

Thus, x is endogenous and OLS would not give a consistent estimator of β. Note that the error-in-variables
problem can be interpreted as an omitted variable case: If we add ε to the regression then the problem would
disappear. In other words, if we observe the measurement error then we can recover the true regressor.

Recall that the OLS estimator of β̂ is β̂ = β +
Σn

i=1(xi−x̄)ui

Σn
i=1(xi−x̄)2 . The plim of b is obtained as follows:

plimβ̂ = β +
plim 1

nΣni=1(xi − x̄)ui

plim 1
nΣni=1(xi − x̄)2

= β +
Cov(x, u)

V (x)

= β − βσεε
V (x∗) + σεε

= β(
V (x∗)

V (x∗) + σεε
)

Note that in this case the OLS estimator underestimates the true parameter if β > 0, and overestimates β if
β < 0. So it is generally said that classical EIV makes the OLS estimator to be ”attenuated” towards zero. This
is a powerful result because we not only know that the OLS estimator is inconsistent but also the direction of
the inconsistency. In this case, the bias or inconsistency depends on the ratio of error variance to true variance.

Sometimes there is confusion between the EIV formulation and the specification of x as a proxy variable for x∗

(which is unobserved). Recall that a proxy variable x satisfies x∗ = θ0 + θ1x+ r and Cov(x, r) = 0.

The proxy x and the error r are uncorrelated, but in the EIV model x and the error ε are correlated. What
differentiates the two cases is the assumed correlation between the observed variable and an error term that is
added to the structural error term of the regression (and not whether x is on the left hand side or the right
hand side of an equation).
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2 MEASUREMENT ERROR DEFINITIONS

In the event that there are more regressors in the regression (with or without measurement errors), the general
result is that all the estimators are potentially inconsistent, even if just only one variable is badly measured.

The OLS estimator of the mismeasured regressor is still attenuated towards zero, but it is harder to sign the
direction of the bias in the other (correctly measured) variables as this depends on the correlation between the
regressors. What is important to remember is that measurement error in one variable can potentially contami-
nate the estimators of the coefficients of all other variables.

What happens y = y∗ + δ where y∗ is true value, but observed with error δ? Are there conditions on δ under
which OLS is consistent?

2.1 Classical Measurement Error

We will start with the simplest regression models with one independent variable. For expositional ease, we also
assume that both the dependent and the explanatory variable have mean zero. Suppose we wish to estimate
the population relationship

y = βx+ ε (1)

Unfortunately, we only have data on

x̃ = x+ u (2)

ỹ = y + v (3)

i.e. our observed variables are measured with an additive error. Let’s make the following simplifying assumptions

E(u) = 0 (4)

plim
1

n
(y′u) = 0 (5)

plim
1

n
(x′u) = 0 (6)

plim
1

n
(ε′u) = 0 (7)

The measurement error in the explanatory variable has mean zero, is uncorrelated with the true dependent and
independent variables and with the equation error. Also we will start by assuming σ2

v = 0, i.e. there is only
measurement error in x. These assumptions define the classical EIV model.

Substitute (2) into (1):

y = β(x̃− u) + ε = yi = βx̃+ (ε− βu) (8)

The measurement error in x becomes part of the error term in the regression equation thus creating an endo-
geneity bias. Since x̃ and u are positively correlated (from (2)) we can see that OLS estimation will lead to a

negative bias in β̂ if the true β is positive and a positive bias if β is negative.

To assess the size of the bias consider the OLS-estimator for β

β̂ =
cov(x̃, y)

var(x̃)
=
cov(x+ u, βx+ ε)

var(x+ u)

and

Swiss Institute of Artificial Intelligence (SIAI) page 3 of 10



2 MEASUREMENT ERROR DEFINITIONS

plim β̂ =
βσ2

x

σ2
x + σ2

u

= λβ

where

λ ≡ σ2
x

σ2
x + σ2

u

The quantity λ is referred to as reliability or signal-to-total variance ratio. Since 0 < λ < 1 the coefficient β̂ will
be biased towards zero. This bias is therefore called attenuation bias and λ is the attenuation factor in this case.

The bias is

plim β̂ − β = λβ − β = −(1− λ)β = − σ2
u

σ2
x + σ2

u

β

which again brings out the fact that the bias depends on the sign and size of β.

2.2 Measurement error for variance

(Mathematical derivation in this subsection is optional for MBA)
In order to figure out what happens to the estimated standard error first consider estimating the residual
variance from the regression

ε̂ = y − β̂x̃ = y − β̂(x+ u)

Add and subtract the true error ε = y − βx from this equation and collect terms.

ε̂ = ε− (y − βx) + y − β̂x− β̂u

= ε+ (β − β̂)x− β̂u

You notice that the residual contains two additional sources of variation compared to the true error. The first
is due to the fact that β̂ is biased towards zero. Unlike in the absence of measurement error the term β̂ − β
does not vanish (even asymptotically).

The second term is due to the additional variance introduced by the presence of measurement error in the
regressor. Note that by assumption, the three random variables ε, x, and u in this equation are uncorrelated.
We therefore obtain for the estimated variance of the equation error

plim σ̂2
ε = σ2

ε + (1− λ)2β2σ2
x + λ2β2σ2

u

For the estimate of the variance of
√
n(β̂ − β), call it ŝ, we have

plim ŝ = plim
σ̂2
ε

σ̂2
x̃

=
σ2
ε + (1− λ)2β2σ2

x + λ2β2σ2
u

σ2
x + σ2

u

=
σ2
x

σ2
x + σ2

u

·
(
σ2
ε

σ2
x

)
+

σ2
x

σ2
x + σ2

u

· (1− λ)2β2 +
σ2
x

σ2
x + σ2

u

· λ2β2

= λ · σ
2
ε

σ2
x

+ λ(1− λ)2β2 + λ2(1− λ)β2

= λs+ λ(1− λ)β2

The first term indicates that the true standard error is underestimated in proportion to λ. Since the second
term is positive we cannot sign the overall bias in the estimated standard error.
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2 MEASUREMENT ERROR DEFINITIONS

2.3 Measurement error for t-statistics

(Mathematical derivation in this subsection is optional for MBA)
However, the t-statistic will be biased downwards. The t-ratio converges to

plim t√
n

=
plim β̂√

ŝ
=

λβ√
λx+ λ(1− λ)β2

=
√
λ · β√

s+ (1− λ)β2

which is smaller than β/
√
s.

Given the situations in t-statistics, in the presence of measurement error, which almost always is the case in real
life data, we not only lose trust on the estimated value’s consistency, but the test statistics are also questioned.
Can you still trust any regression analysis?

2.4 Simple Extension in dependent variables

Next, consider measurement error in the dependent variable y, i.e. let σ2
v > 0 while σ2

u = 0. Substitute (3) into
(1):

ỹ = βx+ ε+ v

Since v is uncorrelated with x we can estimate β consistently by OLS in this case. Of course, the estimates will
be less precise than with perfect data.

Return to the case where there is measurement error only in x. The fact that measurement error in the
dependent variable is more innocuous than measurement error in the independent variable might suggest that
we run the reverse regression of x on y thus avoiding the bias from measurement error. Unfortunately, this
does not solve the problem. Reverse (8) to obtain

x̃ =
1

β
y − 1

β
ε+ u

u and y are uncorrelated by assumption but y is correlated with the equation error ε now. So we have cured
the regression of errors-in-variables bias but created an endogeneity problem instead. Note, however, that this

regression is still useful because ε and y are negatively correlated so that 1̂/β is biased downwards, implying an

upward bias for β̂r = 1/(1̂/β). Thus the results from the standard regression and from the reverse regression

will bracket the true coefficient, i.e. plim β̂ < β < plim β̂r.

Implicitly, this bracketing result uses the fact that we know that σ2
ε and σ2

u have to be positive. The bounds
of this interval are obtained whenever one of the two variances is zero. This implies that the interval tends to
be large when these variances are large. In practice the bracketing result is therefore often not very informa-
tive. The bracketing result extends to multivariate regressions: in the case of two regressors you can run the
original as well as two reverse regressions. The results will imply that the true (β1, β2) lies inside the trian-
gular area mapped out by these three regressions, and so forth for more regressors [Klepper and Leamer (1984)].

2.5 Simple Extension in data transformation

Another useful fact to notice is that data transformations will typically magnify the measurement error problem.
Assume you want to estimate the relationship

y = βx+ γx2 + ε

Under normality the attenuation factor for γ̂ will be the square of the attenuation factor for β̂ [Griliches (1986)].

So what can we do to get consistent estimates of β?
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2 MEASUREMENT ERROR DEFINITIONS

� If either σ2
x, σ

2
u, or λ is known we can make the appropriate adjustment for the bias in β. Either one of

these is sufficient as we can estimate σ2
x+σ2

u = plim var(x̃) consistently. Such information may come from
validation studies of our data. In grouped data estimation, i.e. regression on cell means, the sampling
error introduced by the fact that the means are calculated from a sample can be estimated [Deaton (1985)].
This only matters if cell sizes are small; grouped data estimation yields consistent estimates with cell sizes
going to infinity (but not with the number of cells going to infinity at constant cell sizes).

� Any instrument z correlated with x but uncorrelated with u will identify the true coefficient since

β̂IV =
cov(y, z)

cov(x̃, z)
=
cov(βx+ ε, z)

cov(x+ u, z)

plim β̂IV =
βσxz
σxz

= β

In this case it is also possible to get a consistent estimate of the population R2 = β2σ2
x/σ

2
Y . The estimator

R̂2 = β̂IV ·
cov(y, x̃)

var(y)
=
β̂IV

β̂r

which is the product of the IV coefficient and the OLS coefficient from the reverse regression, yields

plim R̂2 = β · βσ
2
x

σ2
y

= R2

� (Obviously) Get better data.

2.6 Simple Extension in multivariate models

(Mathematical derivation in this subsection is optional for MBA)
What happens to the bias if we add more variables to the model? Consider the equation

y = βx+ γw + ε (9)

Even if only x̃ is subject to measurement error while w is measured correctly both parameters will in general
be biased now. γ̂ is unbiased when the two regressors are uncorrelated. β̂ is still biased towards zero. We can
also determine how the bias in β̂ in the multivariate regression is related to the attenuation bias in the bivariate
regression (which may also suffer from omitted variable bias now). To figure this out, consider the formula for

β̂ in the two variable case

β̂ =
var(w)cov(y, x̃)− cov(w, x̃)cov(y, w)

var(x̃)var(w)− cov(w, x̃)2

Thus we obtain

plim β̂ =
σ2
w(βσ2

x + γσxw)− σx̃w(γσ2
w + βσxw)

σ2
w(σ2

x + σ2
u)− (σ2

x̃w)2

=
β(σ2

wσ
2
x − σx̃wσxw) + γσ2

w(σxw − σx̃w))

σ2
w(σ2

x + σ2
u)− (σ2

x̃w)2

This does not get us much further. However, in the special case where w is only correlated with x but not with
u, this can be simplified because now σxw = σx̃w so that

plim β̂ =
β(σ2

wσ
2
x − (σxw)2)

σ2
w(σ2

x + σ2
u)− (σxw)2

= βλ′ (10)

Notice that σ2
wσ

2
x > (σxw)2 which proves that β̂ is biased towards zero. There are various ways to rewrite (11).

I find it instructive to look at the representation of the attenuation factor λ′ in terms of the reliability ratio λ
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and the R2 of a regression of x̃ on w. Since this is a one variable regression the population R2 is just the square
of the correlation coefficient of the variables

R2
x̃w =

(σxw)2

σ2
w(σ2

x + σ2
u)

Dividing numerator and denominator in (11) by (σ2
x + σ2

u) yields the following expression for the attenuation
factor

λ′ =
σ2
wλ− σ2

wR
2
x̃w

σ2
w − σ2

wR
2
x̃w

=
λ−R2

x̃w

1−R2
x̃w

This formula is quite intuitive. It says the following: if there is no omitted variable bias from estimating (1)
instead of (10) because the true γ = 0, then the attenuation bias will increase as additional regressors (correlated
with x) are added since the expression above is decreasing in R2

x̃w. What is going on is that the additional
regressor w will now serve as a proxy for part of the signal in x.

Therefore, the partial correlation between y and x̃ will be attenuated more, since some of the signal has been
taken care of by the w already. Notice that R2

x̃w < λ because w is only correlated with x but not with u. Hence
0 < λ′ < λ < 1.

In the special case just discussed, and if x and w are positively correlated, the bias in γ̂ will have the opposite
sign of the bias in β̂. In fact, with the additional assumption that σ2

x = σ2
w we have

plim γ̂ − γ = ρxw(1− λ′)β = −ρxw(plim β̂ − β)

where ρxw is the correlation coefficient between x and w. When γ = 0, comparisons between the bivariate
regression of y on x̃ and the multivariate model including w are harder to interpret because we have to keep
in mind that the bivariate regression is now also subject to omitted variable bias. Some results are avail-
able for special cases. If β > 0, γ > 0 and x and w are positively correlated (but w is still uncorrelated with

u) then the probability limit of the estimated β̂ in the multivariate regression will be lower than in the bivariate.

This follows because adding w to the regression purges it of the (positive) omitted variable bias while introduc-
ing additional (negative) attenuation bias. This example also makes it clear that no such statements will be
possible if the omitted variable bias is negative.

3 Non-classical Measurement Error

(Mathematical derivation in this section is optional for MBA)
We will now start relaxing the classical assumptions. Return to the model (1) and (2) but drop assumption (6)
that x and u are uncorrelated. Recall that

β̂ =
cov(x+ u, βx+ ε)

var(x+ u)

so that we have in this case

plim β̂ =
β(σ2

x + σxu)

σ2
x + σ2

u + 2σxu

=

(
1− (σ2

u + σxu)

σ2
x + σ2

u + 2σxu

)
β = (1− bux̃)β (11)

Notice that the numerator in bux̃ is the covariance between x̃ and u. Thus, bux̃ is the regression coefficient of
a regression of u on x̃. The classical case is a special case of this where this regression coefficient bux̃ = 1− λ.
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3 NON-CLASSICAL MEASUREMENT ERROR

The derivative of 1− bux̃ with respect to σxu has the sign of σ2
u − σ2

x.

Starting from a situation where σxu = 0 (classical measurement error) increasing this covariance increases the
attenuation factor (decreases the bias) if more than half of the variance in x̃ is measurement error and decreases
it otherwise. In earnings data this covariance tends to be negative [Bound and Krueger (1991), they call this
mean reverting measurement error]. If x̃ consisted mostly of measurement error then a more negative σxu
implies a lower attenuation factor and may even reverse the sign of the estimated β.

Measurement error in the dependent variable that is correlated with the true y or with the x’s can be analyzed
along similar lines. A general framework for this is provided by [Bound et.al. (1994)]. Make X an n× k matrix
of covariates, β a k vector of coefficients, etc. so that (1) becomes

y = Xβ + ε

Then

β̂ = (X̃ ′X̃)−1X̃ ′ỹ = (X̃ ′X̃)−1X̃ ′(X̃β − Uβ + v + ε)

= β + (X̃ ′X̃)−1X̃ ′(−Uβ + v + ε)

and

plim β̂ = β + plim(X̃ ′X̃)−1X̃ ′(−Uβ + v)

Collecting the measurement errors in a matrix

W = [U |v]

yields

plim β̂ = β + plim(X̃ ′X̃)−1X̃ ′W

[
−β
1

]
(12)

so that the biases in more general cases can always be thought of in terms of regression coefficients from re-
gressing the measurement errors on the mismeasured covariates. Special cases like (12) are easily obtained from
(13). These regression coefficients of the measurement errors on the mismeasured covariates are therefore what
validation studies ought to focus on.

What happens when we do instrumental variables in this case? For simplicity, focus on the one regressor case.

β̂IV =
cov(y, z)

cov(x̃, z)
=
cov(βx+ ε, z)

cov(x+ u, z)

plim β̂IV =
βσxz

σxz + σzu

This demonstrates that we can still get consistent estimates by using instrumental variables as long as the in-
struments are only correlated with true X’s but not with any of the measurement errors, i.e. the term σzu = 0
above. On the other hand, this condition is much more challenging in this case, since we have σxu 6= 0 and we
need σzu = 0 and σzx 6= 0. Think, for example, about the case where z = x+ η is a second independent report
of the same underlying x.

In this case, σzu = σxu + σηu. Hence, even if the errors were uncorrelated, i.e. σηu = 0, we still have
σzu = σxu 6= 0 [Black, Berger, and Scott (1998)]. The upshot from this is that the instruments most likely
to be helpful are the types of instruments we would be using anyway for other reasons (say to cure selection
bias). For example, quarter of birth in [Angrist and Krueger (1991)] is much less likely to be correlated with the
measurement error in schooling than is a sibling’s report of ones schooling [Ashenfelter and Krueger (1994)].
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4 Measurement Error in Dummy Variables

(Mathematical derivation in this section is optional for MBA)
There is an interesting special case of non-classical measurement error: that of a binary regressor. Obviously,
misclassification of a dummy variable cannot lead to classical measurement error. If the dummy is one, mea-
surement error can only be negative; if the dummy is zero, it can only be positive. So the measurement error is
negatively correlated with the true variable. This problem has enough structure that it is worthwhile looking
at it separately. Consider the regression

yi = α+ βdi + εi (13)

where di ∈ 0, 1. For concreteness, think of yi as wages, di = 1 as union members and di = 0 as nonmembers so
that β is the union wage differential. It is useful to note that the OLS estimate of β is the difference between
the mean of yi as di = 1 and the mean as di = 0. Instead of d we observe a variable d̃ that misclassifies some
observations. Take expectations of (15) conditional on the observed value of di:

E(yi|d̃i = 1) = α+ β · P (di = 1|d̃i = 1)

E(yi|d̃i = 0) = α+ β · P (di = 1|d̃i = 0)

The regression coefficient for the union wage differential is the sample analogue of the difference between these
two, so it satisfies

plim β̂ = β ·
[
P (di = 1|d̃ = 1)− P (di = 1|d̃ = 0)

]
(14)

Equation (16) says that β will be attenuated because some (high wage) union members are classified as non-
members while some (low wage) nonmembers are classified as members.

We need some further notation. Let q1 be the probability that we observe somebody to be a union member
when he truly is, i.e. q1 ≡ P (d̃i = 1|di = 1), and similarly q0 ≡ P (d̃i = 1|di = 0). Thus 1− q1 is the probability
that a member is misclassified and q0 is the probability that a nonmember is misclassified. Furthermore, let
π ≡ P (di = 1) be the true membership rate. Notice that the estimate of π given by π̂ = N−1

∑
d̃i satisfies

plim π̂ = πq1 + (1− π)q0

Return to equation (15). By Bayes’s Rule we can write the terms that appear in this equation as

P (di = 1|d̃i = 1) =
P (d̃i = 1|di = 1) · P (di = 1)

P (d̃i = 1)
=

πq1

πq1 + (1− π)q0

and

P (di = 1|d̃i = 0) =
π(1− q1)

π(1− q1) + (1− π)(1− q0)

and substituting back into (15) yields

plim = β ·
[

πq1

πq1 + (1− π)q0
− π(1− q1)

π(1− q1) + (1− π)(1− q0)

]
(15)

= β ·
[
πq1

π̂
− π(1− q1)

1− π̂

]
= β · (1− π̂)πq1 − π̂π(1− q1)

π̂(1− π̂)

= β · π[(1− π̂)q1 − π̂(1− q1)]

π̂(1− π̂)

= β · π(q1 − π̂)

π̂(1− π̂)
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Absent knowledge about q1 and q0 we cannot identify the true β and π from our data, i.e. from the estimates
β̂ and π̂. In a multivariate regression, no simple formula is available, although β and π can still be identified if
q1 and q0 are known [Aigner (1973)].

4.1 Instrumental Variables Estimation of the Dummy Variable Model

Suppose we have another binary variable zi available, which has the same properties as the mismeasured dummy
variable d̃i. Can we use zi as an instrument in the estimation of (16)? Instrumental variables estimation will
not yield a consistent estimate of β in this case. The reason for this is simple. Recall that the measurement
error can only be either -1 or 0 (when di = 1), or 1 or 0 (when di = 0). This means that the measurement
errors in two mismeasured variables will be positively correlated.

In order to study this case, define h1 ≡ P (zi = 1|di = 1) and h0 ≡ P (zi = 1|di = 0). The IV estimator in this
case is simply the Wald estimator so that

plim β̂IV =
E(yi|zi = 1)− E(yi|zi = 0)

E(d̃i|zi = 1)− E(d̃i|zi = 0)
(16)

The numerator has the same form as (15) with zi replacing d̃i. The terms in the denominator can also easily
be derived:

E(d̃i|zi = 1) = P (d̃i = 1|zi = 1)

=
P (d̃i = 1, zi = 1)

P (zi = 1)

=
P (d̃i = 1, zi = 1|di = 1)P (di = 1) + P (d̃i = 1, zi = 1|di = 0)P (di = 0)

P (zi = 1|di = 1)P (di = 1) + P (zi = 1|di = 0)P (di = 0)

=
q1h1π + q0h0(1− π)

h1π + h0(1− π)

and similarly for E(d̃i|zi = 0). Substituting everything into (17) yields

plim β̂IV =
β ·
[

πh1

h1π+h0(1−π) −
π(1−h1)

(1−h1)π+(1−h0)(1−π)

]
q1h1π+q0h0(1−π)
h1π+h0(1−π) − q1(1−h1)π+q0(1−h0)(1−π)

(1−h1)π+(1−h0)(1−π)

With some elementary algebra this simplifies to

plim β̂IV =
β

q1 − q0

The IV estimate of β is biased by a factor 1/(q1 − q0). This has some interesting features. The bias only

depends on the misclassification rates in the variable d̃i which is being used as the endogenous regressor. This
is because more misclassification in the instrument will lead to a smaller first stage coefficient. Since generally
1 > q1 > q0 > 0, IV will be biased upwards. Hence, OLS and IV estimation could be used to bound the true
coefficient.
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