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In 2008, a polling company called Research 2000 was hired by 

Daily Kos to gather approval data on top politicians.

◼ The percentages from the men almost always had the same 

parity as the percentages from the women.

◼ The pollster not only rounded numbers but manipulated the 

outcome to look “clean”.

◼ Almost all summary data that are available in the real world are 

“touched”. What is required to unwrap the decoration is not a 

simple coding library that claims machine learning can do 

everything automatically.

◼ Statistics are used everywhere

– Estimate the probability that incoming email is spam.

– Pollsters can gauge the pulse of a large population on a variety 

of issues.

◼ Many researchers lack a clear grasp of statistics

– It is a commonly accepted term that the sheer size is an 

important, and mostly a critical factor to determine whether the 

data is “BigData”.

– The key factor of “BigData” is multiple patterns, not merely the 

amount of data. Only these “BigData” can provide rich 

information.
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Basic statistics
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Introduction
- Basic statistics 

EXAMPLE – UNCOVERING DATA FAKERS
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◼ Monty Hall Problem

– Suppose a player opened the door A, then a host opened C

𝑃 𝜃 𝐷 =
𝑃 𝜃 ∙𝑃 𝐷 𝜃)

𝑃 𝐷
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =

𝑝𝑟𝑖𝑜𝑟×𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒 𝑑𝑎𝑡𝑎

◼ The frequentists give the same weight to all trials, but the 

Bayesian statisticians may give different weights to the most 

recent trials.

◼ In other words, Bayesian can be applied to cases where 

background states are changing overtime.

Moment is the operator to calculate average

◼ 1st moment : mean, median, mode

– Expectation (1st moment operator)

𝑬 𝒙 = ෍

𝒂𝒍𝒍 𝒂

𝒑(𝒂) ∙ 𝒂

– Equal-weighted Mean : 𝑝 𝑎 =
1

𝑛

– Unequal-weighted statistics : 𝑝 𝑎 can be a probability function

◼ 2nd moment : variance, covariance, correlation

– Variance (2nd moment operator)

𝑽𝒂𝒓 𝒙 = ෍

𝒂𝒍𝒍 𝒂

𝒑(𝒂) ∙ 𝒂 − 𝑬 𝒙
𝟐

◼ 3rd moment : skewness

◼ 4th moment : kurtosis

3

Two schools of statistical thought 
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Introduction
- Statistical thoughts and Moments

Moment

Basic Statistics
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kurtosis
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variance
meanPrior

𝑃(𝐻)
Likelihood

𝑃 𝐷 𝐻)
𝑃(𝐻) ∙ 𝑃(𝐷|𝐻)

Posterior

𝑃 𝐻|𝐷

A ൗ1 3 ൗ1 2 ൗ1 6 ൗ1 3

B ൗ1 3 1 ൗ1 3 ൗ2 3

C ൗ1 3 0 0 0
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◼ THE VIETNAM DRAFT LOTTERY, 1970

Can you spot a pattern from the plots above?

Why sample selection bias distort the statistical analysis?

◼ Plotting and visualizing data

– This can reveal different patterns or hidden properties of the 

data

◼ Making assumptions about the data

– It is important to check for complex effects

– Are the data multi-modal / skewed?

4

The different approaches for exploring data
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Exploratory Analysis

EXAMPLE: VISUALIZING BIAS
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0 50 100

n=100, p=0.2

n=100, p=0.6

n=1000, p=0.06
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Important Distributions
- Various probabilities

◼ Normal distribution (mean 𝜇, variance 𝜎2)

– 𝑓 𝑥 =
1

𝜎 2𝜋
𝑒
−

𝑥−𝜇 2

2𝜎2 𝑤ℎ𝑒𝑟𝑒 𝑥 ~ 𝑁 𝜇, 𝜎2

– If y =
𝑥−𝜇

𝜎
, y is standardized version of 𝑥. 𝑦 ~ 𝑁 0,1

◼ Student t distribution (degree of freedom 𝜈 = 𝑛 − 1)

– Used to assessing statistical significance

Gaussian

Normal

Student t

◼ Binomial distribution

– sum of 𝑛 independent Bernoulli trials (success or fail)

– 𝐸 𝑥 = 𝑛𝑝, 𝑉𝑎𝑟 𝑥 = 𝑛𝑝(1 − 𝑝)

◼ Poisson distribution

– Average number of (rare) events in a specific time period

– 𝑓 𝑥 =
𝑒−𝜆𝜆𝑥

𝑥!
𝑥 = 0,1,2… , 𝐸 𝑥 = 𝑉𝑎𝑟 𝑥 = 𝜆

Binomial

Poisson

Chi-square

(𝝌𝟐)

F-dist

◼ Chi-square distribution

– Sum of squares of 𝑛 iid. standard normal random variables

𝝌 = 𝑍1
2 + 𝑍2

2 +⋯+ 𝑍𝑛
2 𝑤ℎ𝑒𝑟𝑒 Zi ~ 𝑖𝑖𝑑. 𝑁(0, 1)

◼ F-distribution

– Widely used in ANOVA test, F-test.

-40 -20 0 20 40

N(0, 10)

N(10, 15)

N(0, 5)

0 20 40 60

χ-square(5)

χ-square(10)
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Binomial distribution

PDF of normal distribution

Chi-square distribution
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Poisson distribution

F distribution
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◼ Useful ways of numerically summarizing data

– Sample Mean : ҧ𝑥 = ො𝜇 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖

– Sample Variance : ෢𝜎2 =
1

𝑛−1
σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2

– Median : the middle value when the data are ordered

– Percentiles : an extension of median to values

– Inter-Quartile range (IQR) : the difference between 75th and 

25th percentile

– Mode : the most frequently occurring value

– Range : The minimum and maximum values

6

Quantitative measures and summary statistics
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Quantitative measures and summary statistics

Note: In the case of variance, we divede by 𝑛 − 1 in the denominator and not 𝑛

Median

(Percentile 50%)

Mode

IQR

75%25%

◼ Summary statistics may not represent true property

– Suppose four datasets have same properties below:

ҧ𝑥 = 9, ෢𝜎𝑥
2 = 11

ത𝑦 = 7.50, ෢𝜎𝑥
2 = 4.12

𝑐𝑜𝑟𝑟 𝑥, 𝑦 = 0.816

– However, scatterplots show very different datasets: 

– Same data can be drawn from the datasets only if:

– Datasets follow identical distribution

– Datasets have same 1st and 2nd moment

– Datasets are scaled identically

EXAMPLE: ANSCOMBE’S QUARTET

Source: Anscombe, F. J. (1973). Graphs in statistical analysis.

The american statistician, 27(1), 17-21.
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◼ Self-selection bias

– Dependent variable that has varying level of effects to the 

outcome, depending on the surrounding conditions, cannot be 

explained by single variable.

– e.g) Suppose an agency would like to issue stimulus check 

to people whose wage is under $1,500 per month.

– People whose wage is around $1,500 would report their 

wage is under $1,500 to receive the check.

– Therefore, the surrounding conditions must be controlled in 

advance using other variables.

– If variables to control surrounding conditions are omitted, the 

model is exposed to fallacy due to unobserved or unidentified 

factors. (omitted variable bias)

◼ Aggregate data cannot always be used to draw 

conclusions about individual data

– In 1950, a statistician named William S. Robinson looked at 

each one computed the literacy rate and the fraction of 

immigrants. 

– From the scatter plot above, we might conclude that 

immigrants in 1950 were more literate than non-immigrants, 

but in fact, the opposite was true!

– In fact, immigrants were more likely to settle in states that 

already had high literacy rates.

7

EXAMPLE – WARNING OF THE DAY: ECOLOGICAL FALLACY
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Self-selection bias

Self-selection bias

0 500 1000 1500 2000 2500 3000

wage ($)

# of 

people

reported
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Confidence intervals and hypothesis tests

2. Confidence intervals and hypothesis tests
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◼ Central Limit Theorem (CLT)

– If we collect mean of a bunch of independent random variables 

that all have the same distribution, the result will be 

approximately Gaussian

For ത𝑋𝑖 ≡
𝑋1+𝑋2+⋯+𝑋𝑛

𝑛
, 𝐸 𝑋𝑖 = 𝜇, 𝑉𝑎𝑟 𝑋𝑖 = 𝜎2 < ∞,

𝑛 ത𝑋𝑛 − 𝜇 ՜
𝑑
𝑁(0, 𝜎2)

All rights reserved. Swiss Institute of Artificial Intelligence (SIAI)

Binomial data
- Central Limit Theorem

Central Limit Theorem

◼ Example of central limit theorem

– Population data with 𝜇 = 8.02

– Histogram of sampled value (sample size=30)

Visualize Central Limit Theorem

0
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1 3 5 7 9 11 13 15 17 19 21 23 25

0
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0
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# of samples = 100 # of samples = 5,000

mean = 8.08 mean = 8.019

S1

Population

Samples

S2

S3

Sn

ഥX1

ഥX2

ഥX3

ഥXn

– Whichever the population 

distribution we have, mean of ഥX𝑖

repeatedly sampled from same 

distribution converges to Gaussian 

distribution

– Don‘t be confused with Law of Large 

Number (LLN) – sample average 

converges to the population mean 

when sample size 𝑛 ՜ ∞

0

3

6
mean true mean x

◼ Example of Law of Large Number

sample size 𝑛converges to true mean

skewed data

nearly normal
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◼ Binomial distribution approximation to Poisson

– Binomial distribution is the sum of a bunch of independent 

Bernoulli random variables.

𝑃 𝑋 = 𝑖 =
𝑛!

𝑛 − 𝑖 ! 𝑖!
𝑝𝑖 1 − 𝑝 𝑛−𝑖

=
𝑛!

𝑛 − 𝑖 ! 𝑖!

𝜆

𝑛

𝑖

1 −
𝜆

𝑛

𝑛−𝑖

=
𝑛 𝑛 − 1 ∙ 𝑛 − 𝑖 + 1

𝑛𝑖
𝜆𝑖

𝑖!

1 −
𝜆
𝑛

𝑛

1 −
𝜆
𝑛

𝑖

∴ 𝑃[𝑋 = 𝑖] ≈
𝑒−𝜆𝜆𝑖

𝑖!
~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)

◼ Random variable for rare events

– Rare events such as error rate, a number of clicks on ads 

usually follow not Gaussian but Poisson distribution.

– If the data does not follow Gaussian, test statistics that are 

based on normal distribution cannot be used.
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Central Limit Theorem

= 𝑒−𝜆

= 1= 1

◼ Approximately converge to Poisson distribution

– As sample size increases, binomial distribution converges to 

Poisson distribution.

Visualize Binomial Distribution Approximation to Poisson

(𝑛𝑝 = 9)
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0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40

𝑷𝒐𝒊𝒔𝒔𝒐𝒏 (𝜆 = 9)

Binomial data (Cont.)
- Binomial distribution approximation to Poisson
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Point estimation

LCL UCL

Interval estimation

Unbiased Estimator’s 

Distribution

Biased Estimator’s 

Distribution
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Methods of Estimation
- How can we inference the population parameter?

Two types of estimation

◼ Point estimation 

– It involves the use of sample data to calculate a single value of 

an unknown population parameter.

◼ Interval estimation

– We use interval estimation because point estimation with a 

single value is difficult to represent parameters.

Population

Sample

Point

Estimation

Interval

Estimation

Estimate / Estimator

◼ Estimate

– It is a specific observed numerical value used to estimate an 

unknown population parameter.

◼ Unbiased estimator

– The estimator is equal to the true value within the population 

(p̂=p).

𝜇

Confidence intervals and hypothesis tests Section #2
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Confidence interval and interpretation
- Confidence interval and correct interpretation

μ-2.58 ⋅ 𝜎ത𝑥

μ-1.96 ⋅ 𝜎ത𝑥

μ-1.645 ⋅ 𝜎ത𝑥 μ +1.645 ⋅ 𝜎ത𝑥

μ +1.96 ⋅ 𝜎ത𝑥

μ+2.58 ⋅ 𝜎ത𝑥

90%

95%

99%

ഥ𝒙μ

𝝈ഥ𝒙
𝛼/𝟐 𝛼/𝟐

𝟏 − 𝛼

10 119

Computed interval

Missed

Missed

Confidence interval

Confidence interval

◼ The probability that a population parameter will fall between a set 

of values.

◼ It is important to establish an appropriate confidence interval to 

obtain the necessary information.

Level of confidence(𝟏 − 𝛼)

◼ The percent of confidence intervals (from many samples) that we 

expect to contain the true population parameter. 

Interpretation

A Correct interpretation of confidence interval

◼ If we take samples several times and compute the interval each 

time, then (1-α)% of these intervals will include the actual value of 

μ – We may never know which ones.

◼ Different samples give different confidence intervals.

തx ± z ൗ𝛼 2
∙ 𝜎തx

𝜇
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Hypothesis and TypeⅠError & Type Ⅱ Error  

◼ null hypothesis(H0) : the true proportion is, in fact p

◼ alternative hypothesis(H1) : the true mean is significantly smaller 

than p

◼ Significance(α) : the probability of the study rejecting the null 

hypothesis, given that the null hypothesis was assumed to be 

true

◼ a threshold usually balances between Type I and Type II errors

All rights reserved. Swiss Institute of Artificial Intelligence (SIAI)

TypeⅠError & Type Ⅱ Error and Statistical Power
- Hypothesis Error and Increasing the statistical power

Increasing the sample size

As the number of data increases, 

the variance decreases.

Increasing the Effect size

As the difference between the 

two populations increases, the 

statistical power improves. 

3 Ways To Increase Statistical Power

H0
H1

β
α

1-β

H0 H1

β α

1-β↑

H0 H1

β α

1-β ↑

H0 H1

β α

1-β ↑

Increasing the alpha level

Alpha and beta values are offset 

by each other, so as alpha 

increases, the 1-beta value 

increases.
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EXAMPLE: DRUG THERAPHY RESULTS: 

A WARNING ABOUT DATA COLLECTION

◼ Importance of data sampling

– Results of a simulated drug trial measuring the effects of statin 

drugs on lifespan. The top guru shows the lifespan of subjects 

who did not receive treatment, and the bottom figure shows the 

lifespan of subjects who did receive it.

– The hypothesis should not be adopted or rejected solely by 

changes in the mean value.

– If the distribution function changes, so do the statistical power.

– If the distribution function does not follow a normal distribution, 

we must consider various factors.

All rights reserved. Swiss Institute of Artificial Intelligence (SIAI)

hypothesis tests and Statistical power
- What should we be careful about when testing hypotheses?

EXAMPLE: FERTILITY CLINICS

◼ Data size and statistical power
– A funnel plot showing conception statistics from fertility clinics 

in the UK. 

– x-axis indicates the sample sizes, y-axis indicates the 

quantity of interest. The funnels (dashed lines) indicate 

thresholds for being significantly different from the null value 

of 32% (the national average). 

– large number of data does not necessarily mean that the 

power is good

Confidence intervals and hypothesis tests Section #2
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Two-sample Test(A/B Test)
- hypothesis test with two samples

◼ A/B TEST

– The t statistic value varies depending on the size and weight of 

the data value of each sample.

– It is difficult to explain multiple variables because of the use of 

static data.

H0: μ1 = μ2

H1: μ1≠ μ2

H0: μ1 = 0

H1: μ1≠ 0

One-sample Test & Two-sample Test

35%20%

CONTROL VARIATION

A B

n1 n2 t-statistic

1/500 1/500 1.5

1/100 1/900 1.3

1/900 1/100 1.7

>

A/B Test

◼ One-Sample Test

– Is there a difference between a group and the population.

◼ Two-Sample Test

– Is there a difference between two groups.

Hypothesis 

Test statistic

(σ is known) (σ is unknown)

Hypothesis 

Test statistic

Confidence intervals and hypothesis tests Section #2



Linear regression

3. Linear regression
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Simple linear regression
- Simple, but essential to develop intuition for multiple linear regression

Ordinary Least square estimators (scalar version)

𝑮𝒐𝒂𝒍: 𝒎𝒊𝒏
𝜷𝟎,𝜷𝟏

σ𝒊=𝟏
𝒏 [𝒚𝒊 − (𝜷𝟎 + 𝜷𝟏𝒙𝒊)]

𝟐 , where 𝜖𝑖 = 𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖) ~

N 0, 𝜎2

◼ There are 𝑛 data points

◼ Assume 𝑥1, 𝑥2, … , 𝑥𝑛 are fixed

◼ መ𝛽1 =
σ𝑖=1
𝑛 (𝑥𝑖− ҧ𝑥)𝑦𝑖
σ𝑖=1
𝑛 (𝑥𝑖− ҧ𝑥)2

= 
𝑪𝒐𝒗(𝒙,𝒚)

𝒗𝒂𝒓(𝒙)
,      𝐸 መ𝛽1 = 𝛽1, 𝑉𝑎𝑟 መ𝛽1 =

𝜎2

σ𝑖=1
𝑛 (𝑥𝑖− ҧ𝑥)2

◼ መ𝛽0 = ത𝑦 − መ𝛽1 ҧ𝑥,       𝐸 መ𝛽0 = 𝛽0, 𝑉𝑎𝑟 መ𝛽0 = 𝜎2(
1

𝑛
+

ҧ𝑥2

σ𝑖=1
𝑛 (𝑥𝑖− ҧ𝑥)2

)

◼ Expectation/variance of መ𝛽0 & መ𝛽1 can be used to do hypothesis tests 

and compute confidence/prediction intervals

Ordinary 

least square 

estimators

Simple linear regression

◼ Linear regression captures the changing average of response(𝑦) 

according to the change of predictors(𝑥)

◼ Linear regression assumes variance of predictors can explain 

variance of response

◼ 𝛽0 controls the height, embodying anchoring and can be removed by 

demeaning

– 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖 ⇒ 𝑦𝑖 − ത𝑦 = ෪𝛽1(𝑥𝑖− ҧ𝑥) + 𝑣𝑖

◼ 𝛽1 captures the correlation between response and predictors 

Simple 

linear 

regression

All rights reserved. Swiss Institute of Artificial Intelligence (SIAI)

ሽerror

𝑦 = 𝛽0+𝛽1𝑥

𝛽1

𝛽0

Data: 

(𝑥1, 𝑦1)
(𝑥2, 𝑦2)

.

.
(𝑥𝑛, 𝑦𝑛)

Linear regression
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t-statistic for the slope

𝑡𝛽1=
෢𝛽1−𝛽1

𝑠𝛽1
~ 𝑡 𝑛 − 2 , 𝑠𝛽1 =

ෝ𝜎

σ𝑖=1
𝑛 (𝑥𝑖− ҧ𝑥)2

◼ If the x-values are all really close together, or 𝑥 has small swing,  

𝑉𝑎𝑟 መ𝛽1 becomes larger

◼ Increase of the number of data points 𝑛 can decrease 𝑉𝑎𝑟 መ𝛽1

◼ Larger 𝑉𝑎𝑟 መ𝛽1 makes t-statistic of መ𝛽1 lower and increases the 

possibility of not rejecting the null hypothesis, H0

t-statistic for the intercept

𝑡𝛽0=
෢𝛽0 − 𝛽0
𝑠𝛽0

~ 𝑡 𝑛 − 2 , 𝑠𝛽0= ො𝜎
1

𝑛
+

ҧ𝑥2

σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

18All rights reserved. Swiss Institute of Artificial Intelligence (SIAI)

Tests and intervals in simple linear regression
- Implement hypothesis tests and compute confidence/prediction intervals

Confidence/Prediction interval

Confidence intervals for 𝜷𝟎 and 𝜷𝟏

෢𝛽0 ± 𝑡 Τ𝛼 2
(𝑛 − 2) ∗ 𝑠𝛽0,   

෢𝛽1 ± 𝑡 Τ𝛼 2
(𝑛 − 2) ∗ 𝑠𝛽1

Confidence interval for the mean of out-of sample response

ෞ𝜇𝑥∗ ± 𝑡 ൗ𝛼 2
𝑛 − 2 ∗ ො𝜎

1

𝑛
+

(𝑥∗ − ҧ𝑥)2

σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

◼ 𝜇𝑥∗ is the expected value of 𝑦(𝑥∗)

Prediction interval for the out-of sample response

ො𝑦 𝑥∗ ± 𝑡 ൗ𝛼 2
𝑛 − 2 ∗ ො𝜎 1 +

1

𝑛
+

(𝑥∗ − ҧ𝑥)2

σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

t-statistic 

◼ Prediction interval is 

wider than confidence 

interval at the same 

1 − 𝛼 % significance 

level

𝑉𝑎𝑟(෢𝛽1) is large 𝑉𝑎𝑟(෢𝛽1) is small
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◼ Emerge of septic truck and rainy days are everyday events

Number of rainy days in London

Number of days septic truck in Scotland

R2 = 0.99

Example- spurious regression

Linear regression

Correlation

◼ Linear regression just shows the correlation of response(𝑦) & predictors(𝑥)  

◼ መ𝛽1= 
𝐶𝑜𝑣(𝑥,𝑦)

𝑣𝑎𝑟(𝑥)
captures the relationship even though we can measure the statistic such as changing average

◼ However, linear regression tells us the correlation, not the causality

◼ Just choosing predictors which have high correlation with response is not reasonable

Correlation

Correlation vs Causality
- Correlation does not imply causality!

Causality

◼ Causality is applied to cases where action A causes outcome B

◼ Correlation can be mistranslated if spurious regression, simultaneity, omitted variable, coincidence exist

– Example: number of days septic truck emerges in Scotland and number of rainy days in London

◼ We cannot prove that the causality exists and humankind should judge whether the causality exists

◼ However, whether the causality does not exist can be proved by Granger causality

Causality

Correlation

Causality

Spurious regression

Simultaneity

Omitted variable

Coincidence

All rights reserved. Swiss Institute of Artificial Intelligence (SIAI) 19
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Interpolation vs extrapolation
- How to make non-linearity?

Creation of non-linearity

Non-linearity

◼ The most common way to create non-linearity is to use polynomials, 

where 𝑛 − 1 th order polynomial that passes through 𝑛 data points 

is solved

◼ 𝑓 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛−1𝑥

𝑛−1

– 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 is known, while 𝑎0, 𝑎1,…𝑎𝑛−1 are unknown

◼

1 𝑥1 𝑥1
2 … … 𝑥1

𝑛−1

1 𝑥2 𝑥2
2 … … 𝑥2

𝑛−1

… … … … … …
1 𝑥𝑛−1 𝑥𝑛−1

2 … … 𝑥𝑛−1
𝑛−1

1 𝑥𝑛 𝑥𝑛
2 … … 𝑥𝑛

𝑛−1

𝑎0
𝑎1
.
.
.

𝑎𝑛−1

=

𝑓(𝑥1)
𝑓(𝑥2)
.
.
.

𝑓(𝑥𝑛)

– Polynomial interpolation problem can be shown as above

◼ 𝑓1 𝑥 =
𝑥−𝑥1

𝑥0−𝑥1
𝑓 𝑥0 +

𝑥−𝑥0

𝑥1−𝑥0
𝑓(𝑥1) for the first-order version

◼ 𝑓2 𝑥 =
(𝑥−𝑥1)(𝑥−𝑥2)

(𝑥0−𝑥1)(𝑥0−𝑥2)
𝑓 𝑥0 +

(𝑥−𝑥0)(𝑥−𝑥2)

(𝑥1−𝑥0)(𝑥1−𝑥2)
𝑓 𝑥1 +

(𝑥−𝑥0)(𝑥−𝑥1)

(𝑥2−𝑥0)(𝑥2−𝑥1)
𝑓 𝑥2

for the second-order version (shown right)

Example- creation of second-order polynomial

3rd polynomial

1st polynomial

Sum of three polynomials
2nd polynomial

◼ Goal: create black line which connects three black points using 

polynomials

◼ The black line is the sum of three terms, 1st polynomial(red line), 

2nd polynomial(blue line) and 3rd polynomial(pink line)

◼ As the number of terms added increases, higher order 

polynomials emerge and total error becomes smaller 
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Estimation of interest rate

Orbit of Halley’s Comet

◼ Fitting with linear model would not be

a reasonable choice to compute the orbit

of Halley’s Comet

◼ Comet tends to move while following a 

curve, not a linear line

◼ We should think about which function to

use in order to make non-linear fit
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Example- inter/extrapolation of interest rate, Halley’s Comet 

Interpolation

◼ Prediction of y for a value of x which is within the interval of 

points that are observed in the original data

– Example: estimation of interest rate

◼ We should reasonably determine to use linear/non-linear model

– Example: Estimating the orbit of Halley’s Comet

◼ Spline interpolation fits low-degree polynomials to small subsets 

of the values instead of fitting a single, high-order polynomial

Extrapolation

◼ Prediction of y for a value of x which is outside the range of 

values that are observed in the original data

– Example: 12 years interest rate with the same data above

Interpolation vs extrapolation
- Examples of interpolation/extrapolation

Interpolation / Extrapolation

Linear regression

1st-order spline 2nd-order spline

Cubic spline

Interpolating cubic

0 2 4 6 8 10 12 14

INTEREST RATE

INTERPOLATION

EXTRAPOLATION
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Ordinary Least square estimators (matrix version)

𝑮𝒐𝒂𝒍: 𝒎𝒊𝒏
𝜷

𝒚 − 𝑿𝜷 𝟐, where 𝜀 ~ 𝑁(𝟎, 𝜎2In)

◼ ෡𝜷 = (𝑿′𝑿)−𝟏𝑿′𝒚,  𝐸 መ𝛽 = 𝛽, 𝑉𝑎𝑟 መ𝛽 = 𝜎2(𝑋′𝑋)−1

Rank deficiency

◼ Inputting same data due to the lack of data can cause rank deficiency

◼ In this case, X has not full rank and OLS estimator cannot be obtained

◼ The number of equations become less than the number of variables

Linear regression

OLS/ Rank 

deficiency

Multiple linear regression

◼ Multiple linear regression is an extension of simple linear regression

◼ y =

𝑦1
𝑦2
.
.
.
𝑦𝑛

, 𝑋 =

1 𝑥11 𝑥12 … … 𝑥1𝑝
1 𝑥21 𝑥22 … … 𝑥2𝑝
… … … … … …
1 𝑥𝑖1 𝑥𝑖2 … … 𝑥𝑖𝑝
… … … … … …
1 𝑥𝑛1 𝑥𝑛2 … … 𝑥𝑛𝑝

, β =

𝛽0
𝛽1
…
𝛽𝑖
…
𝛽𝑝

, 𝜀 =

𝜀1
𝜀2
…
𝜀𝑖
…
𝜀𝑛

◼ In matrix perspective, multiple linear regression is trying to find the

the projection of response( ො𝑦) into the vector space of predictors(𝑋)

such that ො𝑦 is orthogonal to 𝜀

Multiple 

linear 

regression

Multiple linear regression 
- What if more than 2 predictor variables exist?

All rights reserved. Swiss Institute of Artificial Intelligence (SIAI)

𝒚

𝜺

𝑥2

𝑥1

ො𝑦 = 𝑋 መ𝛽

𝑝 = 2

y = 𝑋𝛽 + 𝜀
𝜀 ~ 𝑁(𝟎, 𝜎2In)

X = 

1 3 5
1 3 5
1 3 5
2 6 3
2 7 6

rank(X) = 3

Section #3
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Coefficient of determination (𝑹𝟐)

◼ Coefficient of determination is interpreted as the fraction of 

variability in the data explained by model

𝑅2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
, 0 ≤ 𝑅2 ≤ 1

F-test

◼ F-test use variance to measure performance of the model

𝐹 =
𝐸𝑆𝑆/𝑝

𝑅𝑆𝑆/(𝑛 − 𝑝 − 1)
=

𝑅2/𝑝

(1 − 𝑅2)/(𝑛 − 𝑝 − 1)
~ 𝐹(𝑝, 𝑛 − 𝑝 − 1)

◼ High ESS and low RSS means the model can fit well to data

◼ Note that 
𝐸𝑆𝑆

𝜎2
~ χ2 𝑝 and 

𝑅𝑆𝑆

𝜎2
~ 𝜒2 𝑛 − 𝑝 − 1

◼ As the explanatory power gets better (𝑅2 becomes larger),           

F-statistic becomes higher

– Since F-distribution has one-sided thick tail than the 

normal/student t distribution, F-test can increase the power of 

outliers to the maximum

23
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Model evaluation

Analysis of variance

◼ 𝑦𝑖 − ത𝑦 = ෝ𝑦𝑖 − ത𝑦 + 𝑦𝑖 − ෝ𝑦𝑖

– ෝ𝑦𝑖 − ത𝑦 is the difference explained by model, 𝑦𝑖 − ෝ𝑦𝑖 is residual

◼ σ𝑖=1
𝑛 (𝑦𝑖 − ത𝑦)2=σ𝑖=1

𝑛 ( ෝ𝑦𝑖 − ത𝑦)2+σ𝑖=1
𝑛 (𝑦𝑖 − ෝ𝑦𝑖)

2 (𝑇𝑆𝑆 = 𝐸𝑆𝑆 + 𝑅𝑆𝑆)

– Now, we can focus on variance, which is 2nd moment

◼ Why 2nd moment is important?

– When one data explains other data, the key is swing (variance)

– Generally, data with large swing tend to explain the other data 

well

Analysis of variance and model evaluation
- Usage of 2nd moment to test performance of the model

Analysis of variance

30

40

50

60

70

80

90

100

10 15 20 25 30

𝑦

𝑥

𝑦𝑖

෠𝑌 = 𝛽0 + 𝛽1𝑋

𝑇𝑆𝑆 Σ 𝑌𝑖 − ത𝑌 2

𝑅𝑆𝑆 Σ 𝑌𝑖 − ෠𝑌𝑖
2

𝐸𝑆𝑆 Σ ෡𝑌𝑖 − ത𝑌
2

ത𝑌

ത𝑋

0

0.1

0.2

0 1 2 3 4 5 6

heavier tail



Find the beta Find the beta 
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Appendix
- Estimation of beta
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Express 𝑋′𝑋 −1 as matrix 𝑎𝑖𝑖 ,

Eventually, we knew the expected value and covariance of the 

random variable beta. Therefore, we can express the distribution 

of the probability variable beta as follows.

Find the Var(beta)

Derive the beta variance-covariance matrix.
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Appendix
- Estimation of variance of beta​

Find the Var(beta)
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