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4 Regression Diagnostics and Advanced Regression Topics

We continue our discussion of regression by talking about residuals and outliers, and then look at some more
advanced approaches for linear regression, including nonlinear models and sparsity- and robustness-oriented
approaches.

4.1 Residual Analysis

Remember that we defined the residual for data point i as €; = y; — ¢;: the difference between the observed
value and the predicted value (in contrast, the error ¢; is the difference between the observed value and the true
prediction from the correct line). We can often learn a lot about how well our model did by analyzing them.
Intuitively, if the model is good, then a plot of the residuals (y; — §;) against the fitted values (g;) should look
like noise (i.e., there shouldn’t be any visible patterns).

Anscombe’s quartet can once again provide us with some intuition.

Anscombe’s Quartet Revisited
Recall Anscombe’s Quartet: 4 datasets with very similar statistical properties under a simple quantitative

analysis, but that looks very different. Here they are again, but this time with linear regression lines fitted
to each one:
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Below, we plot the residuals y; — §; vs. § (note that unlike the previous plot, we’re not plotting against x!),
which shows how much above and below the fitted line the data points are.
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We immediately see that in panels 2, 3, and 4, the residuals don’t look anything like random noise as there
are specific patterns to them! This suggests that a linear fit is not appropriate for datasets 2, 3, and 4.

While the raw residuals should look like noise, in general their distribution isn’t as simple as the 4.i.d. Gaussian
distribution that we assume for the error. Recalling the probabilistic model from the previous chapter, the
data are assumed to be generated by 1y; = X;8 + ¢€,;, where each ¢; is a zero-mean Gaussian with variance 2.
But g; doesn’t come directly from this process! Instead, it comes from putting y through the linear regression

equations we saw last time. Recall our regression equation solution:

p=X"X)"XTy
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So the residuals ¢ (length n vector) are:

E=y—19

)y (4.1)
N(XB +€)

)XB+ (I —H)e

I-X(XTX)7'XT)XB+ (I — H)e

X - X(XTX)"YXTX)B+ (I — H)e

This shows how the actual noise e(that we don’t get to observe) relates to the residuals € = y; — §. In fact, in
general the residuals are correlated with each other! Furthermore, the variance of the i-th residual ¢; may not
be the same as that of ¢;. We can standardize the residuals so that each one has the same variance o2.

Using the matrix H = X(X7X)71 X7 which is called the hat matrix (or projection matrix), we can define the
standardized residuals as ¢;/+/1 — H;;, where H;; is the i-th diagonal entry of H.

Thus, our model tells us that the residuals may not have the same distribution and may be correlated, but the
standardized residuals have the same, albeit unknown, variance o2. (Obviously, there are known variance cases,
assuming that we have data for entire population.)

In order to analyze residuals even further, many packages will go one step further and compute standardized
”Studentizing” residuals. These are computed by estimating the variance of the noise o2 and then dividing by
it. Why is this process called ”Studentizing”? The estimated noise variance has a (scaled) x2 distribution with
n—m—1 degrees of freedom, and the standardized residual ¢;/1/1 — H;; has a normal distribution, so the result
has a Student ¢ distribution. Generally this process is called standardizing with estimated variance, and the
term ”Studentizing” is used only for a few fraction of statisticians.

Most packaged software will standardize residuals for you, but if you’re writing your own analysis code, don’t
forget to standardize before analyzing the residuals!

While the residuals may be correlated with each other, an important theoretical result states that under the
probabilistic model we’ve been using for regression, the residuals é are uncorrelated with the fitted values g.
This means that when we plot the residuals against the fitted values (as we did in the previous example for
Anscombe’s Quartet), the resulting plot should look like random noise if the fitted linear regression model is
any good.

Residual analysis summary

Here are the most important points from our analysis of residuals:

e The residuals themselves, €;, might have different variances, and furthermore, might be correlated with
each other. We can address the first problem by standardizing them so that they have the same variance
as the residuals, or Studentizing them so that they have variance 1. It’s important to make sure you
visualize standardized or Studentized residuals!

e The residuals € are uncorrelated with the fitted values §j. This means that if the model we use is in fact a
good fit, we shouldn’t see any patterns in the standardized residuals.
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4.2 Outliers

Real life datasets often have some points that are far away from the rest of the data. Here are some informal
definitions used to characterize such anomalies:

e An outlier is any point that’s far away from the rest of the data. There are different definitions and ways
of quantifying them depending on how you define ”far away”.

e The leverage of a data point is a quantitative description of how far it is from the rest of the points in the
z-direction. We'll see a more formal description later, but intuitively, points that are farther away from
the average in the z-direction have higher leverage, and points closer to the average have lower leverage.

e An influential point is an outlier with high leverage that significantly affects the slope of a regression line.
We'll quantify this a little later.
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(a) Some points and a regres-
sion line fit to those points.

(b) When viewing y as a func-
tion of x, points A and B are
both outliers since they're far
away from the data, but A is
also an influential point, since
moving it just a little will have
a large effect on the slope of the

(c) The difference between fit-
ting ¥y = ax + b (blue, dashed)
and z = cy +d (green, dotted).
While the results would be sim-
ilar if not for the outliers, A
has a big impact on the first
fit, while B has a big impact

regression line. on the second.

Figure 4.1: An illustration of outliers and influential points.

Figure 4.1 illustrates these concepts. Since influential points (outlier) can really mess up linear regression re-
sults, it’s important to deal with them. Sometimes, such points indicate the need for more data-gathering: if
most of our data is concentrated in one area and our sampling methodology was flawed, we might have missed
data points in the region between the main cluster and an outlier. Alternatively, if such points don’t indicate a
problem in data collection but really just are irrelevant outliers, we can remove such points from the analysis;
we’ll see a few techniques for identifying them later.

The leverage of any particular point is formally defined as the corresponding diagonal element of the hat matrix
(or the projection matrix), H;; (as defined in Equation (4.1)). We can see this intuition more clearly in the
one-dimensional case, where

1 (l‘i — i‘)Q

Hiy=—4=—7"""——
n Z?Zl(xj — )2

Here, we can see that relatively large values of x;’s have larger leverage as expected. Leverage only measures

how far away from the average x-value a point is: it’s a measure of how influential a point has the potential to
be, and doesn’t depend on the point’s y-value.

How might we quantify the influence of a particular point? One way is to take each point and fit the model with
and without that point. We can then compare the two results: the more different they are, the more influential
that point would be. Cook’s distance is a measure of how influential each point i is that captures exactly this

Swiss Institute of Artificial Intelligence (SIAI) page 3 of 16



L3, SIAI

W | e 4 REGRESSION DIAGNOSTICS AND ADVANCED REGRESSION TOPICS

idea. The definition is based on fitting the full model (i.e., using all of our data), and then fitting the model
again, but this time excluding point i:

full prediction  prediction w/o i

il T - iy )

D; =
! p-MSE ’

where
e {J; is the predicted value at x; based on the full model,
® 7;(—i is the predicted value at z; based on the model fit without point i,
e p is the number of features (and the number of coefficients),

e and M SF is the mean squared error, % E;.L:l(@f —y;)?

1 Hy;
D, = ! &2
p-MSE (1— Hy)2

We could thus use Cook’s distance to compute how influential a point is and screen for outliers by removing
points that are too influential based on a threshold of our choice.

Manually removing outliers can feel rather cumbersome, raising the question of whether there are regression
methods that automatically handle outliers more gracefully. This leads us to the topic of robust regression.

4.3 Advanced Regression: Robustness

One issue with standard linear regression is that it can be affected by outliers. As we saw with influential points,
one inconveniently-placed outlier can dramatically alter the outcome of a regression. In this section, we’ll first
look at two complementary views of how we can achieve more robust outcomes by tweaking the model we’ve
learned about, and then see a completely different way of achieving robustness using random sampling.

4.3.1 Optimization View of Robustness

Suppose instead that we tried to adjust the optimization problem we’re solving. Here’s our optimization
problem:

Squared error
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Figure 4.2: Graphs showing the squared-error, LAD, Huber, and bi-square loss functions. Note the different
y-axis scales!
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where r; = (y; — X;f3) is the residual and p(r) = r? is the squared error function. Unfortunately, squared error
puts very large penalties on large errors: p(2) = 4, but p(10) = 100. So, any good solution to this optimization
problem will avoid large errors, even if that means fitting to outliers. To get around this, we’ll try choosing a
different function p. The function p(r) we choose here is usually called the loss function, and any solution to a
problem of this form is called an M-estimator. What other loss functions can we try?

¢ Least absolute deviations, or LAD: p(r) = |r|. While this avoids the problem of excessively penalizing
outliers, it leads to a loss function that isn’t differentiable at » = 0. It also is less stable than least-squares:
changing the z-value of a point just a little can have a large impact on the solution.

2/2 k
e Huber: p(r) = /2, Irl <
k(le| = k/2), |r[ =k
This is similar to LAD, but replaces the sharp corner around 0 with a smoothed parabola for differentia-
bility (being differentiable makes it easy to take derivatives when optimizing for the best ).

e Bisquare: these functions have a behavior similar to squared loss near 0, but level off after a certain
point. Some even assign a cost of 0 to very large deviations, to avoid being sensitive to outliers at all.

These loss functions are shown in Figure 4.2.
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Figure 4.3: Three different distributions and their tails: Gaussian with variance 1 (blue), Laplacian (green),
Cauchy (red), and Student’s t with 5 degrees of freedom (orange).

4.3.2 Distribution View of Robustness

Remember from Chapter 1 that the normal distribution is very concentrated. So, by assuming Gaussian noise
in our model, we're effectively assuming that large errors are extremely unlikely. One way to be less sensitive
to outliers is to assume distributions with heavier tails: that is, distributions that don’t assign such low proba-
bility to improbable events. For example, the Student’s ¢ distribution, which we’ve already seen, the Laplacian
distribution, the Cauchy distribution, and any power-law distribution all have heavier tails than the Gaussian.
These are illustrated in Figure 4.3. Assuming the noise € is Gaussian leads to squared loss.

4.3.3 RANSAC

Another approach to robust regression is RANSAC, or RANdom SAmple Consensus. While RANSAC doesn’t
have the theoretical justifications of the methods in the last two sections, it nonetheless is widely used and often
works well in practice.

The basic assumption of RANSAC is just that the data consists primarily of non-outliers, which we’ll call ”in-
liers”. The algorithm works as follows: we randomly pick a subset of our points to call inliers and compute a
model based on those points. Any other points that fit this computed model well are added to the inliers. We
then compute the error for this model, and repeat the entire process several times. Whichever model achieves
the smallest error is the one we pick. Here’s a description in pseudocode:
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Inputs: Points (z1,41), ..., (Tn, Yn)

function RANSAC

for iteration t € 1,2,...,7 do
Choose a random subset of points to be inliers; call them I
Fit a model M, using the selected points
Find all points that have error less than o and add them to I;
(Optional) Re-fit the model M; with the new I
Find error for model M; on points in I, call it €

Choose model with the smallest error

Notice how imprecise our specification is; the following are all parameters that must be decided upon to use
RANSAC:

e The number of iterations, 7": this one can be chosen based on a theoretical result.
e How large of a subset to choose

e How to fit the model and evaluate the error

e The error threshold for adding inliers, «

e Whether or not to do the optional refitting

Many of these depend on the specific problem being solved.

4.4 Advanced Regression: Sparsity

Another useful criterion that we often want our model to satisfy is sparsity. This means that we want many of
the coefficients 5 to be 0. This constraint is useful in many cases, such as when there are more features than
data points, or when some features are very similar to others. Adding in a sparsity constraint in these settings
often helps prevent overfitting, and leads to simpler, more interpretable models.

4.4.1 A first attempt: ridge regression

Since we want the coefficients to be close to zero (i.e., small), let’s try adding a term to our minimization that
”encourages” them to be small. In ridge regression, we solve the following optimization problem:

n p
min| Y- X0+ A e |
A =1 k=1

”data term” ”regularization term”

where \ is a nonnegative parameter that trades off between how small we want the coefficients 85 to be and
how small we want the error to be: if A is 0, then the problem is the same as before, but if X is very large, the
second term counts a lot more than the first, and so we’ll try to make the coefficients 8 as small as possible. A
is often called a regularization parameter, and we’ll later talk a little more about how to choose it. With some
linear algebra, we can get the following solution:

B=(XTX - A)'XTy.

We see that our intuition from before carries over: very large values of A will give us a solution of B =0, and if
A = 0, then our solution is the same as before.

Unfortunately, while ridge regression does give us smaller coefficients (and helps make the problem solvable
when X7 X isn’t invertible), it doesn’t provide us with sparsity. Here’s an example illustrating why: Suppose
we have only 3 input components, and they’re all the same. Then the solutions g, = (1,1,1) and 8, = (0,0, 3)
will both give us the same y, but the second one is sparse while the first one isn’t. But, the second one actually
produces a higher ridge penalty than the first! So, rather than produce a sparse solution, ridge regression will
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actually favor solutions that are not sparse.

While using three identical inputs is a contrived example, in practice it’s common to have several input dimen-
sions that could have similar effects on the output, and choosing a small (sparse) subset is critical to avoid
overfitting,.

For the purposes of preventing overfitting and where we don’t care about sparsity, ridge regression is actually
widely used in practice. However, if we seek a sparse solution, we must turn to a different approach.

Ridge regression: a Bayesian view

Up until now, we've been treating the parameter 8 as a fixed but unknown quantity. But what if we treat it
as a random quantity? Suppose before we know y or X, we have a prior belief about 5, which we’ll encode in
the form of a prior distribution p(5). Once we observe X and y, we can compute a more informed distribution,
called a posterior distribution, from that information. We’ll write it as p(5|X,y) where the ”|” means ”given”
or "having observed”. Using Bayes’ rule, we can compute the posterior distribution as:

p(BI1X,y) < p(B)p(X,y|B) (4.2)

Notice that we’ve already specified p(X,y|5): it’s just the model for the errors e. Once we choose p(f), we
can try to find the value of 5 that’s most likely according to p(8]|X,y). If we choose p(8) to be a zero-mean
Gaussian with variance 02 = ﬁ, then we’ll end up with ridge regression.

4.4.2 Sparse solutions: LASSO

We've seen that introducing a penalty of the form Y 7_, 57 doesn’t give us sparsity. So why not penalize
non-sparsity directly? The ideal alternative might look something like:

mgn [ 30— X2+ 23162 £0) | (1)
i=1 k=1

# of nonzeros in 3

where the penalty imposes a cost for any non-zero value of 5. Alas, there is no known efficient method for
computing a solution to this problem. For any moderate to large dataset, the above optimization problem is
intractable to solve in any reasonable amount of time. We basically can’t do much better than searching over
every possible combination of which Sis are 0 and which aren’t.

Instead, we’ll opt to solve the following problem:

n

min [Z(yi - X;8)% + Azp: |5k|}

i=1 k=1

This problem, also known as ¢;-norm minimization or the Least Absolute Shrinkage and Selection Operator
(LASSO), is an approximation to (4.3) that can be solved efficiently. Additionally, under certain reasonable
conditions, if the true model is in fact sparse, then the solution to this problem will also be sparse. There are
numerous other interesting theoretical results about LASSO, and it’s an active area of open research! As a
result of its popularity, most software packages have an option for LASSO when performing linear regression.

The Bayesian interpretation corresponds to using a Laplacian prior over /3, so that our prior belief p(f3) is e Al
for each coefficient. If we want to perform hypothesis tests or get confidence intervals for coefficients that come
out of this method, we’ll need to use nonparametric statistics, which we’ll talk about in Chapter 5.

4.4.3 Sparsity and shrinkage: a graphical view

Figure 4.4 shows the two Bayesian priors that correspond to ridge regression and LASSO (along with one other
prior). Notice that in ridge regression, a value close to zero is almost as likely as a value equal to zero. However,
LASSO is a bit better: the gap between zero and near-zero in terms of probability is bigger. We can take this one
step further and define other so-called shrinkage priors, which even more strongly encourage values to be zero.
One such prior, called the horseshoe prior2 is shown in Figure 4.4. Unfortunately, many of these result in more
difficult optimization problems; one reason for LASSO’s popularity is that it produces a convex optimization
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problem where we can always find the global optimum (i.e., the best solution). Notice that the horseshoe prior
also has heavier tails than the other two distributions: this means that in addition to encouraging values near
zero, it allows large nonzero values to be more likely.

At this point, we’ve talked about two different kinds of distributions: earlier, we looked at different distributions
for the error e, which led to more robust methods that were less sensitive to outliers. In this section, we looked
at different prior distributions for the coefficients 8, which led to sparser solutions.

0.5 B

04 1
0.3

02} N
0.1

0.0 L \. L L 'I

Figure 4.4: Several coefficient priors for sparse regression: Gaussian (left) as in ridge regression, Laplacian (cen-
ter) as in LASSO, and a horseshoe prior (right). Note that the horseshoe prior approaches 1 as the coefficient
becomes smaller.

4.5 Generalized Linear Models

So far, we've dealt entirely with linear models and linear relationships. Unfortunately, in the real world, we
often come across data with nonlinear properties. While we can often get by with cleverly defined features, we
often have to deal with output data that has a nonlinear dependence that we can’t capture. For example, if
our output data is binary, or even between 0 and 1, the techniques we’ve talked about so far have no way of
constraining the predictions to that range.

Recall that before, we assumed that y = u, + €, where p, = X8.

Generalized linear models are a family of methods that assume the following:

1y =g (XB),

where g(+) is called the link function and is usually nonlinear. Here, the interaction between the input X and
the parameters § remains linear, but the result of that linear interaction is passed through the inverse link
function to obtain the output y. We often write n = X3, so that p, = g~*(n). The choice of link function
typically depends on the problem being solved. Below, we provide an example link function commonly used
when y is binary.

EXAMPLE: LOGISTIC REGRESSION

Suppose that we have data between 0 and 1. Then we can use a sigmoidal link function, which has the
form

1

97 ) = T

A graph of this function is shown in Figure 4.5. This function maps a real number to a number between 0
and 1. Logistic regression is often used in classification problems, where our output is binary.
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Figure 4.5: A sigmoid function maps a real number to a value between 0 and 1.

Generalized linear models also make fewer assumptions about the form of the error: while before, we assumed
that y = py + €, generalized linear models give us more freedom in expressing the relationship between y and
ty by fully specifying the distribution for y.

While generalized linear regression problems usually can’t be solved in closed form (in other words, we can’t get
a simple expression that tells us what f is), there are efficient computational methods to solve such problems,
and many software packages have common cases such as logistic regression implemented.
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5 Nonparametric statistics and model selection

In Chapter 2, we learned about the t-test and its variations. These were designed to compare sample means,
and relied heavily on assumptions of normality. We were able to apply them to non-Gaussian populations by
using the central limit theorem, but that only really works for the mean (since the central limit theorem holds
for averages of samples). Sometimes, we're interested in computing other sample statistics and evaluating their
distributions (remember that all statistics computed from samples are random variables, since they’re functions
of the random samples) so that we can obtain confidence intervals for them. In other situations, we may not
be able to use the central limit theorem due to small sample sizes and/or unusual distributions.

In this chapter, we’ll focus on techniques that don’t require these assumptions. Such methods are usually called
nonparametric or distribution-free. We’ll first look at some statistical tests, then move to methods outside the
testing framework.

5.1 Estimating distributions and distribution-free tests

So far, we’ve only used ”eyeballing” and visual inspection to see if distributions are similar. In this section,
we’ll look at more quantitative approaches to this problem. Despite this, don’t forget that visual inspection is
usually an excellent place to start!

We’ve seen that it’s important to pay attention to the assumptions inherent in any test. The methods in this
section make fewer assumptions and will help us test whether our assumptions are accurate.
5.1.1 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test tests whether two arbitrary distributions are the same. It can be used to compare
two empirical data distributions, or to compare one empirical data distribution to any reference distribution.
It’s based on comparing two cumulative distribution functions (CDF's).

1.0
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0.0
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0.2 |

00 L | L
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Figure 5.1: Two Kolmogorov-Smirnov test plots (right column) with histograms of the data being tested (left
column). On the top row, the empirical CDF (green) matches the test CDF (blue) closely, and the largest
difference (dotted vertical red line, near 0.5) is very small. On the bottom, the empirical CDF is quite different
from the test CDF, and the largest difference is much larger.

Remember that the CDF of a random variable z is the probability that the random variable is less than or
equal to some value. To be a bit more precise, it’s a function F' such that F(a) = P(x < a). When talking
about data, it’s often useful to look at empirical CDFs: F,,(a) = 2 >, I(2; < a) is the CDF of n observed data
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points.

Now suppose we want to compare two CDFs; F1 and F2. They might be empirical CDFs (to compare two
different datasets and see whether they’re significantly different) or one might be a reference CDF (to see whether
a particular distribution is an appropriate choice for a dataset). The Kolmogorov-Smirnov test computes the
statistic D,,:

D, = maz|F}(x) — F2(x)

This compares the two CDFs and looks at the point of maximum discrepancy; see Figure 5.1 for an example.
We can theoretically show that if F'! is the empirical distribution of 2 and F? is the true distribution z was
drawn from, then lim, ,ooD, = 0. Similarly, if the two distributions have no overlap at all, the maximum
difference will be 1 (when one CDF is 1 and the other is 0). Therefore, we can test distribution equality by
comparing the statistic D,, to 0 (if D,, is significantly larger than 0 and close to 1, then we might conclude that
the distributions are not equal).

Notice that this method is only defined for one-dimensional random variables: although there are extensions to
multiple random variables; they are more complex than simply comparing joint CDFs.

Also notice that this test is sensitive to any differences at all in two distributions: two distributions with the
same mean but significantly different shapes will produce a large value of D,,.

5.1.2 Shapiro-Wilk test

The Shapiro-Wilk test tests whether a distribution is Gaussian using quantiles. It’s a bit more specific than
the Kolmogorov-Smirnov test, and as a result tends to be more powerful. We won’t go into much detail on it
in this class, but if you're interested, the Wikipedia page has more detail.

5.1.3 Wilcoxon’s signed-rank test

The two-sample ¢ test we discussed in Chapter 2 requires us to use the central limit theorem to approximate
the distribution of the sample mean as Gaussian. When we can’t make this assumption (i.e., when the number
of samples is small and/or the distributions are very skewed or have very high variance), we can use Wilcoxon’s
signed-rank test for matched pairs.

This is a paired test that compares the medians of two distributions. For example, when comparing the in-
comes of two different groups (especially groups that span the socioeconomic spectrum), the distributions will
likely be highly variable and highly skewed. In such a case, it might be better to use a nonparametric test like
Wilcoxon’s signed-rank test. In contrast to the Kolmogorov-Smirnov test earlier, this test (like its unpaired
cousin the Mann-Whitney U) is only sensitive to changes in the median, and not to changes in the shape.

The null hypothesis in this test states that the median difference between the pairs is zero. We’ll compute
a test statistic and a corresponding p-value, which give us a sense for how likely our data are under the null
hypothesis. We compute this test statistic as follows:

(1) For each pair 4, compute the difference, and keep its absolute value d; and its sign S; (where S; €
{1,0,+1}). We’ll exclude pairs with S; = 0.

(2) Sort the absolute values from smallest to largest, and rank them accordingly. Let R; be the rank of pair
i (for example, if the fifth pair had the third smallest absolute difference, then R5 = 3).

(3) Compute the test statistic:

W:|ZS,»Ri|

W has a known distribution. In fact, if N is greater than about 10, it’s approximately normally distributed (if
not, it still has a known form). So, we can evaluate the probability of observing it under a null hypothesis and
thereby obtain a significance level.

Intuitively, if the median difference is 0, then half the signs should be positive and half should be negative, and
the signs shouldn’t be related to the ranks. If the median difference is non-zero, W will be large (the sum will
produce a large negative value or a large positive value). Notice that once we constructed the rankings and
defined R;, we never used the actual differences!
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5.1.4 Mann-Whitney U Test

The Mann-Whitney U test is similar to the Wilcoxon test, but can be used to compare multiple samples that
aren’t necessarily paired. The null hypothesis for this test is that the two groups have the same distribution,
while the alternative hypothesis is that one group has larger (or smaller) values than the other. Computing the
test statistic is simple:

(1) Combine all data points and rank them (largest to smallest or smallest to largest).

(2) Add up the ranks for data points in the first group; call this R;. Find the number of points in the group;
call it ny. Compute Uy = R; — ni(n1 + 1)/2. Compute Us similarly for the second group.

(3) The test statistic is defined as U = min(Uy, Us).

As with W from the Wilcoxon test, U has a known distribution. If n; and mo are reasonably large, it’s
approximately normally distributed with mean nins/2 under the null hypothesis. If the two medians are very
different, U will be close to 0, and if they’re similar, U will be close to nins/2. Intuitively, here’s why:

e If the values in the first sample were all bigger than the values in the second sample, then R1 = n(n;+1)/2:
this is the smallest possible value for Ry. U; would then be 0.

e If the ranks between the two groups aren’t very different, then U; will be close to Us. With a little algebra,
you can show that the sum Uy + Uy will always be ning. If they’re both about the same, then they’ll both
be near half this value, or ning/2.

5.2 Resampling-based methods

All the approaches we've described involve computing a test statistic from data and measuring how unlikely
our data are based on the distribution of that statistic. If we don’t know enough about the distribution of
our test statistic, we can use the data to tell us about the distribution: this is exactly what resampling-based
methods do. Permutation tests ”sample” different relabelings of the data in order to give us a sense for how
significant the true relabeling’s result is. Bootstrap creates "new” datasets by resampling several times from
the data itself, and treats those as separate samples. The next example illustrates a real-world example where
these methods are useful.

EXAMPLE: CHICAGO TEACHING SCANDAL

In 2002, economists Steven Levitt and Brian Jacob investigated cheating in Chicago public schools, but
not in the way you might think: they decided to investigate cheating by teachers, usually by changing
student answers after the students had taken standardized tests.

So, how’d they do it? Using statistics! They went through test scores from thousands of classrooms in
Chicago schools, and for each classroom, computed two measures:

(1) How unexpected is that classroom’s performance? This was computed by looking at every student’s
performance the year before and the year after. If many students had an unusually high score one
year that wasn’t sustained the following year, then cheating was likely.

ow suspicious are the answer sheets? is was computed by looking at how similar the A-B-C-
2) H ici th heets? Thi ted by looki t h imilar the A-B-C-D
patterns on different students’ answer sheets were.

Unfortunately, computing measures like performance and answer sheet similarity is tricky, and results
in quantities that don’t have well-defined distributions! As a result, it isn’t easy to determine a null
distribution for these quantities, but we still want to evaluate how unexpected or suspicious they are.

To solve this problem, Levitt and Jacob use two nonparametric methods to determine appropriate null
distributions as a way of justifying these measures. In particular:

e They assume (reasonably) that most classrooms have teachers who don’t cheat, so by looking at the
50th to 75th percentiles of both measures above, they can obtain a null distribution for the correlation
between the two.
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e In order to test whether the effects they observed are because of cheating teachers, they randomly
re-assign all the students to new, hypothetical classrooms and repeat their analysis. As a type of
permutation test, this allows them to establish a baseline level for these measures by which they can
evaluate the values they observed.

While neither of these methods is exactly like what we’ll discuss here, they’re both examples of a key idea
in nonparametric statistics: using the data to generate a null hypothesis rather than assuming any kind of
distribution.

What'd they find? 3.4% of classrooms had teachers who cheated on at least one standardized test when
the two measures above were thresholded at the 95th percentile. They also used regression with a variety
of classroom demographics to determine that academically poorer classrooms were more likely to have
cheating teachers, and that policies that put more weight on test scores correlated with increased teacher
cheating.

5.2.1 Permutation tests

Suppose we want to see if a particular complex statistic is significantly different between two groups. If we don’t
know the distribution of the statistic, then we can’t assign any particular probabilities to particular values, and
so we can’t say anything interesting after computing a statistic from data. The idea behind permutation tests
is to use the data to generate the null hypothesis.

The key idea is that if there weren’t a significant difference between this statistic across the two groups in our
data, then the statistic should have the same value for any other two arbitrarily selected ”groups” of the same
sizes. We’ll make up a bunch of fake ”groups” and see if this is the case.

We’ll demonstrate the idea with comparing sample means, but note that in practice sample means could be
compared using a t-test, and that permutation tests are generally used for more complicated statistics whose
distribution can’t be deduced or approximated.

Let’s call the two groups in our data A and B. Our test statistic of interest will be w* = T4 —Zp: the difference
in the means of the two groups. Our null hypothesis will be Hy : T4 = Zp. As before, we want to see whether
this difference is significantly large or small. In order to get a sense for the null distribution of w, we can try
relabeling the points many different times and recomputing the statistic.

Suppose the original set A has n data points, and B has m points. We’'ll randomly pick n points out of all
n+m, assign those to our new ”group” A;, and assign the others to our new ”group” B; (where the subscript ¢
indicates the iteration).

We'll recompute w; based on these new groups, and repeat the process. We can then see whether our value w*
is unusual based on the collection of w;, perhaps by looking at what fraction of them are more extreme than

w*.

We could either repeat this for every possible labeling (usually called an exact test ), or randomly choose a
subset and evaluate only on those (usually called a Monte Carlo approximation). So, this entire procedure re-
quires only a procedure for computing the statistic of interest (in this case, w): the rest is determined by the data.

We can apply permutations elsewhere, too! For example, if we suspect there is some kind of trend in time series
data, we can permute the time indices and compare the correlation. For example, if we observe the time series
data (8, 12, 15.8, 20.3) and suspect there’s a trend, we can permute the order, obtaining permutations like
(15.8, 12, 20.3, 8) or (20.3, 8, 15.8, 12), fit linear models to each one, and evaluate how unlikely the observed
fit is.

5.2.2 Bootstrap

Suppose we have some complicated statistic y that we computed from our data x. If we want to provide a
confidence interval for this statistic, we need to know its variance. When our statistic was simply &, we could
compute the statistic’s standard deviation (i.e., the standard error of that statistic) from our estimated standard
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deviation using s, //n. But for more complicated statistics, where we don’t know the distributions, how do we
provide a confidence interval?
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Figure 5.2: An illustration of bootstrap sampling. The top figure shows the true distribution that our data
points are drawn from, and the second figure shows a histogram of the particular data points we observed
(N = 50). The bottom row shows various bootstrap resamplings of our data (with n = N = 50). Even though
they were obtained from our data, they can be thought of as samples from the true distribution (top).

One approach is a method called bootstrap. The key idea here is that we can resample points from our data,
compute a statistic, and repeat several times to look at the variance across different resamplings.

Recall that our original data (N points) are randomly generated from some true distribution. If we randomly
sample n points (n < N, and often n = N) from our data with replacement, these points will also be random
samples from our true distribution, as shown in Figure 5.2. So, we can compute our statistic over this smaller
random sample and repeat many times, measuring the variance of the statistic across the different sample runs.

Everything we’ve talked about so far has been based on the idea of trying to approximating the true distribution
of observed data with samples. Bootstrap takes this a step further and samples from the samples to generate
more data.

A similar method, known as jackknife, applies a similar process, but looks at N — 1 points taken without re-
placement each time instead of n with replacement. Put more simply, we remove one point at a time and test
the model. Notice that we’ve seen a similar idea before: our initial definition of Cook’s distance was based on
the idea of removing one point at a time. In practice, boostrap is more widely used than jackknife; jackknife
also has very different theoretical properties.

5.3 Model selection

When fitting models (such as regression) to real data, we’ll often have a choice to make for model complexity: a
more complex model might fit the data better but be harder to interpret, while a simpler model might be more
interpretable but produce a larger error. We’ve seen this before when looking at polynomial regression models
and LASSO in Chapters 3 and 4. In this section, we’ll learn how to pick the “best” model for some data among
several choices.

5.3.1 Minimum generalization error

First, we’ll define ”"best” by how well our model generalizes to new data that we’ll see in the future. In particular,
we’ll define it this way to avoid overfitting. How can we figure out how well our model generalizes? The most
common way is to divide our data into three parts:
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e The training set is what we’ll use to fit the model for each possible value of the manually-set parameters,
e the validation set is what we’ll use to determine parameters that require manual settings,

e and the test set is what we use to evaluate our results for reporting, and get a sense for how well our
model will do on new data in the real world.

It’s critically important to properly separate the test set from the training and validation sets! At this point
you may be wondering: why do we need separate test and validation sets? The answer is that we choose a
model based on its validation set performance: if we really want to see generalization error, we need to see how
it does on some new data, not data that we used to pick it.

A good analogy is to think of model fitting and parameter determination as a student learning and taking a
practice exam respectively, and model evaluation as that student taking an actual exam. Using the test data
in any way during the training or validation process is like giving the student an early copy of the exam: it’s
cheating!

Figure 5.3 illustrates a general trend we usually see in this setup: as we increase model complexity, the training
error (i.e. the error of the model on the training set) will go down, while the testing error will hit a ”sweet
spot” and then start increasing due to overfitting.

For example, if we're using LASSO (linear regression with sum-of-absolute-value penalty) as described in Chap-

ter4, we need to choose our regularization parameter A. Recall that A controls model sparsity/complexity: small
values of A lead to complex models, while large values lead to simpler models. One approach is:

(a) Choose several possibilities for A and, for each one, compute coefficients using the training set.

== Training error

=== Validation error

Error
r'd
]
]
]

1 2 3 4 5 6 7 8

Polynomial degree

Figure 5.3: Training and validation error from fitting a polynomial to data. The data were generated from
a fourth-order polynomial. The validation error is smallest at this level, while the training error continues
to decrease as more complex models overfit the training data.

(b) Then, look at how well each one does on the validation set. Separating training and validation helps guard
against overfitting: if a model is overfit to the training data, then it probably won’t do very well on the
validation data.

(c) Once we’ve determined the best value for A (i.e., the one that achieves minimum error in step (b)), we
can fit the model on all the training and validation data, and then see how well it does on the test data.
The test data, which the model/parameters have never seen before, should give a measure of how well the
model will do on arbitrary new data that it sees.

The procedure described above completely separates our fitting and evaluation processes, but it does so at the
cost of preventing us from using much of the data. Recall from last week that using more data for training
typically decreases the variance of our estimates, and helps us get more accurate results. We also need to have
enough data for validation, since using too little will leave us vulnerable to overfitting.

One widely used solution that lets us use more data for training is cross-validation. Here’s how it works:
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(1) First, divide the non-test data into K uniformly sized blocks, often referred to as folds. This gives us K
training-validation pairs: in each pair, the training set consists of K — 1 blocks, and the validation set is
the remaining block.

(2) For each training/validation pair, repeat steps (a) and (b) above: this gives us K different errors for each
value of A\. We can average these together to get an average error for each A, which we’ll then use to select
a model.

(3) Repeat step (c) above to obtain the test error as an evaluation of the model.

Although these examples were described with respect to LASSO and the parameter A, the procedures are much
more general: we could have easily replaced ”value for A” above with a different measure of model complexity.
Also note that we could use a bootstrap-like approach here too: instead of deterministically dividing our dataset
into K parts, we could have randomly subsampled the non-test data K different times and applied the same
procedure.

5.3.2 Penalizing complexity

Another way to address the tradeoff between model complexity and fit error is to directly penalize model com-
plexity. That is, we can express the "badness” of a model as the sum of an error term (recall the sum of squared
error cost that we used in linear regression) and some penalty term that increases as the model becomes more
complex. Here, the penalty term effectively serves as a proxy for minimizing generalization error. Two common
penalty terms are AIC, or Akaike Information Criterion, which adds a penalty term equal to 2p(where p is the
number of parameters), and BIC, or Bayesian Information Criterion, which adds a penalty term equal to p In
n (where n is the number of data points).

BIC is closely related to another criterion known as MDL, or minimum description length. This criterion tries
to compress the model and the error: if the model and the error are both small and simple, they’ll be highly
compressible. A complex model that produces low error will be hard to compress, and an overly simplistic
model will produce high error that will be hard to compress. This criterion tries to achieve a balance between
the two.

EXAMPLE: BAYESIAN OCCAM’S RAZOR

Another idea commonly used is Bayesian Occam’s Razor. In Bayesian models, simpler models tend to
have higher probability of observing data.

Suppose we observe a number and want to decide which of two models generate it. The simpler model, Hy,
says that it’s equally likely to be 1 or 2, while the more complex model, Hs, says that it’s equally likely to
be 1, 2, 3, or 4. The following figure shows the two distributions:
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If we observe the number 2, the likelihood of this observation under H; is 0.5, while the likelihood under
H is 0.25. Therefore, by choosing the model with the highest probability placed on our observation, we're
also choosing the simpler model.

Intuitively, the more values that a model allows for, the more it has to spread out its probability for each
value.
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