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Review
- Basic of regression analysis

◼ Simple regression

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖

◼ Multiple regression

– In scalar form

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖 +⋯+ 𝛽𝑝𝑥𝑝,𝑖 + 𝜖𝑖

– In matrix form

𝒀 = 𝐗𝜷 + 𝝐

◼ Polynomial regression

– For non-linear relationship between exploratory variables and 

dependent variable

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 +⋯+ 𝛽𝑝𝑥𝑖

𝑝
+ 𝜖𝑖

Regression equations Graphical view of linear regression

𝑦 = 𝑥

𝑦 = 𝑥

𝑦 = 𝑥 + 𝑥

𝒙𝟏

𝒙𝟏

𝒙𝟐𝒚

𝛽1

𝝐

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝜀
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Review
- Understanding vector space and projection metrics

◼ There are interest rate data and credit data.

◼ Data A and B look very different from each other, but they 

represent same information (i.e. 𝐴 = 𝑋, 𝐵 = 𝑋 𝑋𝑇𝑋 −1𝑋𝑇)

◼ The ways to verify that data is in the same vector space

– Is it Linear independence? 

– Is there no inverse matrix?

– Is there multicollinearity?

◼ In order to explain according to the situation, it is necessary to 

understand the data.

Projection matrix Two variables in a same vector space

𝒚

𝜺

𝑥2

𝑥1

ො𝑦 = 𝑋 መ𝛽

𝑝 = 2

𝒚 = 𝑿𝜷 + 𝜺
𝜺 ~ 𝑵(0, 𝜎2𝑰𝒏)

Ordinary Least square estimators

𝑎𝑟𝑔𝑚𝑖𝑛
𝜷

𝒚 − 𝑿𝜷 𝟐, where 𝜺 ~ 𝑁(𝟎, 𝜎2𝑰𝒏)

𝜀 = 𝑌 − 𝑋𝛽
𝑌 − 𝑋𝛽 ′ 𝑌 − 𝑋𝛽 = 𝜀′𝜀

Ƹ𝜖 = 𝑦 − ො𝑦

= 𝑦 − 𝑋 መ𝛽
= 𝑦 − (𝑋 𝑋𝑇𝑋 −1𝑋𝑇𝑦)
= 𝐼 − 𝐻 𝑦
= 𝐼 − 𝐻 𝑋𝛽 + 𝜖
= 𝐼 − 𝐻 𝑋𝛽 + 𝐼 − 𝐻 𝜖
= 𝐼 − 𝑋 𝑋𝑇𝑋 −1𝑋𝑇 𝑋𝛽 + 𝐼 − 𝐻 𝜖
= (𝑋 − 𝑋 𝑋𝑇𝑋 −1𝑋𝑇𝑋)𝛽 + 𝐼 − 𝐻 𝜖
= (𝐼 − 𝐻)𝜖

= 𝐻

= 0

Note that 𝑯 matrix is

– symmetric

– idempotent

𝑯𝑯 = 𝑯

– positive semi-definite

𝑯 ≥ 𝟎

collect 

data

abstraction 

from data

Logical 

thinking

Making a 

decision

No Interest Rate(%)

1 2.656

2 2.473

3 3.625

… …

998 3.163

999 3.762

No Credit(pts)

1 833

2 836

3 847

… …

998 746

999 936

𝐴 𝐴 = 0 𝑠𝑎𝑚𝑒 𝑑𝑎𝑡𝑎! 𝐴
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Linear 

regression 

lines fitted

◼ Residuals vs. fitted value (𝒚𝒊 − ෝ𝒚𝒊 𝐯𝐬. ෝ𝒚𝒊)

– The residual do not look anything like random noise.

– Hence, a linear fit is not appropriate for dataset 2, 3, and 4.

◼ Pattern in residual plot

– If there are pattern in error, the model lacks variables 

describing the dependent variable.

– Mis-specification model has mis-specification error of ො𝝐
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ANSCOMBE’S QUATET (REVISITED)
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Residual Analysis
- Four datasets with very similar statistical properties

From the residual pattern, we can figure out the problem of the 

model.

◼ Mis-specification case : Append a new exploratory variable that 

can offset the pattern in residual plot. For instance, a squared 

exploratory variable into the model of second plot above.

◼ Outlier case : Filter out the outliers in the dataset. By removing 

one data point in the model of third and fourth plot above, the 

regression will be fitted almost perfectly.

What should we do for this case?

Residuals vs. 

fitted value

(𝒚𝒊 − ෝ𝒚𝒊 𝐯𝐬. ෝ𝒚𝒊)

Recall that four 

datasets have 

same moment 

information

Note that four plots 

show how much 

above and below 

the fitted line the 

data points are
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◼ The assumption on 𝑿 and 𝝐

𝒀 = 𝑿𝜷 + 𝝐

𝑿𝑻𝒀 = 𝑿𝑻𝑿𝜷 + 𝑿𝑻𝝐

𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀 = 𝑿𝑻𝑿

−𝟏
𝑿𝑻𝑿𝜷+ 𝑿𝑻𝑿

−𝟏
𝑿𝑻𝝐

= 𝜷 + 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝝐

1 𝑿 is fixed so that we have:

𝑬 ෡𝜷 = 𝑬 𝜷 + 𝑬 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝝐

= 𝜷 + 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝑬 𝝐

2 𝑿 is stochastic but independent of ϵ so that we have:

𝑬 ෡𝜷 = 𝑬 𝜷 + 𝑬 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝝐

= 𝜷 + 𝑿𝑻𝑿
−𝟏
𝑬 𝑿𝑻𝝐 where 𝑬[𝑿𝑻𝝐] = 𝟎

◼ 𝑿 and 𝝐 should not be related to each other. If the 𝝐 value 

changes with 𝑿 value, it is difficult to minimize 𝝐.

6

Independence between X and 𝝐
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Residual Analysis
- Gauss-Markov Assumption

Appendix – Gauss-Markov Assumption

The standard Gauss-Markov Assumptions are:

◼ A1 : Linearity

– 𝐲 = 𝐗𝜷 + 𝝐

– This assumption states that there is a linear relationship 

between 𝐲 and 𝐗

◼ A2 : Full rank

– 𝑿 is a full rank matrix

– This assumption states that there is no perfect multicollinearity.

– This assumption is known as the identification condition.

◼ A3 : Zero conditional mean

– 𝐸 𝝐|𝑿 = 0 (A3F, for fixed sample) 

– This assumption states that the disturbances average out to 𝟎

for any value of 𝑿

– 𝐸 𝑿’𝝐 = 0 (A3Rsru) , 𝐸 𝜖𝑖|𝑋1, 𝑋2, … , 𝑋𝑛 = 0 (A3Rmi) 

◼ A4: Homoskedasticity and no autocorrelation

– 𝑉𝑎𝑟 𝜖𝑖 = 𝜎2 < ∞, for ∀𝑖 and 𝐶𝑜𝑣 𝜖𝑖 , 𝜖𝑗 = 0, ∀𝑖≠ 𝑗

– This assumption states assumption of homoskedasticity and no 

autocorrelation

◼ A5: Normality condition

– 𝜖𝑖~𝑖𝑖𝑑 𝑁 0, 𝜎2

Regression Diagnostics and Advanced Regression Topics Section #4
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Outliers
- Analysis of outliers

Real life datasets often have some unexpected points that have 

significantly different aspects from the rest of the data.

◼ Why outliers matter?

– Outliers distort the property of data

◼ Influential points

– In the regression model, the influential points significantly affect 

the coefficients as well as 𝑅2 and therefore mislead the 

researcher’s analysis

Diagnosis of influential outliers is based on the error term

◼ Leverage index

𝐻𝑖𝑖 =
1

𝑛
+

𝑥𝑖 − ҧ𝑥 2

σ𝑗=1
𝑛 𝑥𝑗 − ҧ𝑥

2

◼ Cook’s distance

𝐷𝑖 =
σ𝑗=1
𝑛 ෝ𝑦𝑗 − ො𝑦𝑗 −𝑖

2

𝑝 ∙ 𝑀𝑆𝐸
=

1

𝑝 ∙ 𝑀𝑆𝐸

𝐻𝑖𝑖

1 − 𝐻𝑖𝑖 2
ෝ𝜖𝑖
2

There are several indices to detect outliers / anomalies

R² = 0.177

R² = 0.0004

Index Description Cutoff value

Leverage

(hat index)

Measure how far each observation point far 

from the mean of dependent variable

Τ2 𝑘 − 1 𝑛
~ Τ3 𝑘 − 1 𝑛

Standard 

error
Residual from fitted regression model 2 ~ 3

Cook’s 

distance
Measure combining leverage and residual

4

𝑛

DFFITS
Measure the change between restrict 

model and unrestricted model

1~2 or 

2 Τ𝑘 − 1 𝑛

DFBETAS
Measure the change of each coefficient for 

restricted model and unrestricted model
Τ2 𝑛

Source:  Gorden, R.A. (2010), Regression Analysis for the Social Science, p. 367.

Outliers and Influential Points Diagnosis of outliers

Regression Diagnostics and Advanced Regression Topics Section #4
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Advanced Regression: Robustness
- Optimization view of robustness

Suppose we tried to adjust the optimization problem:

min
𝛽

෍

𝑖=1

𝑛

𝑦𝑖 − 𝑋𝛽 2 =෍

𝑖=1

𝑛

𝜌(𝑟𝑖)

where 𝑟𝑖 = (𝑦𝑖 − 𝑋𝑖𝛽) is the residual and 𝜌 𝑟 = 𝑟2 is squared error 

function. Recall that the squared error gives very large penalties on 

large error. (i.e., 𝜌 2 = 4, 𝜌 10 = 100)

Solution to the optimization problem

If the model is too sensitive to errors, we can consider a different 

function 𝜌(∙) other than 𝜌 𝑟 = 𝑟2. 

◼ LAD (Least Absolute Deviations)

– Often used when the dataset follows Laplacian distribution

𝝆 𝒓 = 𝒓

◼ Huber

– Similar to LAD. Huber function can be differentiable at 𝑟 = 0

𝝆 𝒓 = ቊ
Τ𝒓𝟐 𝟐 ,

𝒌 𝒙 − Τ𝒌 𝟐 ,

𝒓 < 𝒌

𝒓 ≥ 𝒌

◼ Bisquare

– Similar to squared loss. It can level off a certain point.

(Note that the difference in y-axis scales)

This kind of functions also called ‘Kernel’ or ‘Activation function’

Various types of error Loss functions

-2

8
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Squared error

Huber

LAD

Bisquare
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Advanced Regression: Robustness
- Distribution View of Robustness

How to make the model less sensitive to outliers

One way to be less sensitive to outliers is to assume distribution 

with heavier tails: assigning higher probability to improbable events.

Student t distribution, the Laplacian distribution, the Cauchy 

distribution, and any power-law distribution all have heavier tails

than the Gaussian we usually assume effectively.

Any other heavy-tailed distribution?

◼ One-tailed

– Pareto, Log-normal, Weibull, log-logistic, log-gamma, Half-

Cauchy, log-Cauchy

◼ Two-tailed

– Cauchy, Student t, Laplacian(heavier than Gaussian)

RANdom Sample Consensus (RANSAC)

The basic assumption of RANSAC is just that the data consists 

primarily of non-outliers.

dashed lines are fitted models from randomly selected samples

■ Gaussian

(𝜎 = 1)
■ Laplacian

(dof = 1)
■ Cauchy

(𝜎 = 1)
■ Student t

(dof = 5) Randomly 

select 

subsamples

Fit a model

Find points 

having less 

error than 𝛼

Fit a model 

again

(repeated)

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14

True model 

without outliers
Sub-sample fitted line will 

converge to the true line 

without outliers

Distributions insensitive to outliers or extreme points RANSAC
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Advanced Regression: Sparsity
- Ridge regression and Lasso regression

◼ Regularization

– Adding in a sparsity constraint in these settings often helps 

prevent overfitting, and leads to simpler, more interpretable 

models.

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥𝑖
2 + 𝛽3𝑥𝑖

3 + 𝛽4𝑥𝑖
4 + 𝛽5𝑥𝑖

5 + 𝜖𝑖

◼ Ridge regression (L2 regularization)

– The coefficient to be close to zero due to a regularization term

min
𝜷

෍

𝑖=1

𝑛

𝑦𝑖 − 𝑋𝑖𝛽
2 + 𝜆෍

𝑘=1

𝑝

𝛽𝑘
2

– The coefficient will have a significant penalty, 2𝜆

𝜕𝑦

𝜕𝛽2
= 2෍

𝑖=1

𝑛

𝑦𝑖 − 𝑋2𝛽2 𝑋2 + 2𝜆𝛽2 = 0

∴ 𝛽2 =
𝑓(∙)

𝑋2
2 + 2𝜆

𝑤ℎ𝑒𝑟𝑒 𝜆 > 0

– The regularization term of ridge regression (𝜆 σ𝑘=1
𝑝

𝛽𝑘
2 ) would 

not produce sparsity.

◼ Lasso regression (L1 regularization)
– Different from ridge regression, penalize non-sparsity directly

min
𝜷

෍

𝑖=1

𝑛

𝑦𝑖 − 𝑋𝑖𝛽
2 + 𝜆෍

𝑘=1

𝑝

𝕀(𝛽𝑘
2 ≠ 0)

min
𝜷

෍

𝑖=1

𝑛

𝑦𝑖 − 𝑋𝑖𝛽
2 + 𝜆෍

𝑘=1

𝑝

|𝛽𝑘|

– Lasso gives a solution as sparse as possible

◼ A Bayesian view on ridge regression

– Bayesian updates hypothesis by adding new data

𝒑 𝜷 𝑿, 𝒚 ∝ 𝒑 𝜷 𝒑(𝑿, 𝒚| 𝜷)

– Taking log on both sides above, then we get:

𝒍𝒏 𝒑 𝜷 𝑿, 𝒚 ∝ 𝒍𝒏 𝒑 𝜷 + 𝒍𝒏[𝒑(𝑿, 𝒚| 𝜷)]

– The left hand-side will become

– Lasso if prior follows Laplacian

– Ridge if prior follows Gaussian

◼ Find a compromise between regularization and optimization

– Generalization vs. Overfitting

Ignore high-order terms

data term
regularization 

term

෡𝜷 = 𝑿𝑻𝑿+ 𝝀𝑰
−𝟏
𝑿𝑻𝒚

Matrix form (Ridge)

# of non-

zeros in 𝛽

Approximate

Ridge / 

Lasso

Prior

(Penalty term)

min Ƹ𝜖 2

Ridge regression Lasso (Least Absolute Shrinkage and Selection Operator)

Regression Diagnostics and Advanced Regression Topics Section #4
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Several coefficient priors for sparse regression 

What if the data follows unknown pattern other than plots above?

◼ Mixture of distribution

– Some dataset have mixture of distribution that can be grouped

– Suppose we have a dataset following the distribution below:

– We cannot apply any prior for this distribution (RED LINE)

– However, in the view of mixture model, this can be divided into 

three Gaussian distribution

Graphical interpretation on Ridge and Lasso regression

Red contours represent the error (RSS) and blue objects represent 

the constraints of each regression.

◼ General difference between Ridge and Lasso 

Advanced Regression: Sparsity
- Ridge regression and Lasso regression

Gaussian Laplacian Horseshoe

-150 -100 -50 0 50 100 150 200 250

Mixture

Group1

Group2

Group3

𝛽2

𝛽1

መ𝛽𝛽2

𝛽1

መ𝛽

Ridge regression Lasso regression

𝛽1
2 + 𝛽2

2 ≤ 𝑠 |𝛽1| + |𝛽2| ≤ 𝑠

Sparsity and shrinkage: a graphical view Graphical approach

Ridge Lasso

L2-norm regularization L1-norm regularization

Closed form solution (differentiation) Numerical optimization

Good performance in presence of 

collinearity
Model selection property

Tend to shrink a large coefficient first
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Generalized Linear Models
- GLS

Generalized linear model(GLM) generalizes various forms of 

regression (i.e. non-linear model) into a general form

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2x2,𝑖 + 𝛽3𝑥1,𝑖
2 +⋯+ 𝜖𝑖

= 𝑓(𝒙𝒊)

GLMs are a family of methods that assume the following:

𝒚 = 𝝁𝒚 + 𝝐 𝑤ℎ𝑒𝑟𝑒 𝝁𝒚 = 𝑿𝜷

𝝁𝒚 = 𝒈−𝟏(𝑿𝜷)

where g ∙ is called the link function and is usually nonlinear. The 

interaction between the input 𝑿 and the parameters 𝜷 remains 

linear, but the result of that linear interaction is passed through the 

inverse link function to obtain the output 𝒚.

◼ Link function (Kernel)

– There are infinite number of non-linear functions that can be 

used to explain the output.

– We can choose a function similar to the dataset we have

◼ EXAMPLE – logistic regression

– Sigmoid link function can be useful to map 

a real number to a number between 0 and 1.

𝑔−1 𝜼 =
1

1 + 𝑒𝑥𝑝(−𝜼)

Why are Logit & Probit model needed and what are those?

Linear model is hard to explain non-linear relationship between 

exploratory variables and dependent variable. Hence, we need a 

new probability model that has two properties:

– The dependent variable is confined between 0 and 1, 𝒚 ∈ 𝟎, 𝟏

– The probability model become slower in change as 𝒚 is 

approaching to 𝟎 or 𝟏 (sigmoid)

– OLS is not feasible due to the non-linear relationship between 

link function and 𝜷

◼ Logit model

– based on Logistic regression

– 𝐿𝑖 = ln
𝑃𝑖

1−𝑃𝑖
= 𝛽0 + 𝛽1𝑋𝑖

where 𝑃𝑖 =
1

1+𝑒− 𝛽0+𝛽1𝑋𝑖

◼ Probit

– based on Normal CDF

– 𝑃𝑖 = 𝐹 𝐼𝑖 =
1

2𝜋
׬
0

𝐼𝑖 𝑒−
𝑧2

2 𝑑𝑧

where 𝐼𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖

Generalized Linear Models APPENDIX – Logit & Probit

A Sigmoid function 

Regression Diagnostics and Advanced Regression Topics Section #4
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Estimating distributions and distribution-free tests
- Normality test

Comparing two arbitrary distributions

◼ There are several tests to check normality by comparing two 

distributions.

– Kolmogorov-Smirnov test

– Sharpiro test

– Wilcoxon’s signed-rank test

– Mann-Whitney U test

Estimating distributions EXAMPLE – CHICAGO TEACHING SCANDAL

In 2002, economists Steven Levitt and Brian Jacob 

investigated cheating in Chicago public schools

They went through test scores from thousands of classrooms in 

Chicago schools, and for each classroom, computed two measures:

– How unexpected is that classroom’s performance?

– How suspicious are the answer sheets?

◼ They tried to obtain a null distribution from the dataset and 

conduct a permutation test to evaluate the values they observed. 

◼ If the distribution cannot be defined well, we can try to divide the 

data into groups and conduct the analysis

◼ How to solve this kind of problem?

– We could not be able to define the distribution of this problem.

– In general, we can still find out the distribution similar to the 

unknown distribution of the problem.

Data distribution         vs.     Theoretical distribution

Nonparametric statistics and model selection Section #4
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Resampling-based methods
- Model selection

Model selection

◼ We should find a compromise between training error and 

validation error. (regularization vs. optimization)

◼ In the case of LASSO we discussed in the previous slide, we 

need to select proper level of 𝜆.

– High 𝜆 lead to simpler model (sparsity)

– Small 𝜆 lead to complex model

◼ There is no answer for the level of degree. (No rule-of-thumbs)

◼ In addition, error varies in every trial. Therefore, the result of the 

plot above is not guaranteed to every dataset.

General approach to check the distribution

“Eyeballing” can be a good approach to estimate distributions

Approaches

Try to analyze assuming Normal

Check the distribution of dataset

Use Poisson, Laplace…

Is this known distribution?

Check the scatterplot

Is this mixture of distribution?

work well? Graduation😎
Yes

No

No

Divide the dataset 

into groups

No

😡
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