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1 QnA

Question 1. In AR(1) model, A3Rmi assumption isn’t satisfied because yt−1 includes ϵt−1?

Question 2. In the model yt = α0 + β1zt + β2zt−1 + ut, A3Rmi assumption isn’t satisfied because there is
multicollinearity?

2 Problem Set

2.1 What do the problems mean in the assignment?

Q1. If there are lag variables in the model, we should check whether the relation btwn lag variables and error.
(Simultaneity)

Q2. (b)

E(β̂) = E((y′t−1yt−1)
−1y′t−1yt) = E((y′t−1yt−1)

−1y′t−1(β1yt−1 + ϵt))

= E((y′t−1yt−1)
−1y′t−1β1yt−1) + E((y′t−1yt−1)

−1y′t−1ϵt)

= β1 + E(E((y′t−1yt−1)
−1y′t−1ϵt|y1, y2, ..., yt−1, yt, ..., yT )) ∵ Law of Iterated Expectation

= β1 + E((y′t−1yt−1)
−1y′t−1E(ϵt|y1, y2, ..., yt−1, yt, ..., yT ))

= β1 + c, c : constant ∵ E(ϵt|yt, yt+1, ...) ̸= 0

̸= β1

(c)

plim β̂ = plim(y′t−1yt−1)
−1y′t−1yt

= plim(y′t−1yt−1)
−1y′t−1(β1yt−1 + ϵt)

= β1 + plim(y′t−1yt−1)
−1y′t−1ϵt

= β1 + plim

(
y′t−1yt−1

N

)−1(
y′t−1ϵt

N

)

= β1 + plim

(
y′t−1yt−1

N

)−1

plim

(
y′t−1ϵt

N

)
= β1 + (V ar(yt−1))

−1(Cov(yt−1, ϵt))

= β1 + (V ar(yt−1))
−1(E(y′t−1ϵt)) ∵ Cov(yt−1, ϵt) = E(y′t−1ϵt)− E(y′t−1)E(ϵt) = E(y′t−1ϵt)

= β1 ∵ ϵt is independent yt−1

: A3Rsru holds. So we need large sample to get true parameter!
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3 RECAP

3 Recap

1. Differences between cross-sectional and time series data

a. Does time passes?

b. Seasonal dummy variable (including intercations): Seasonally adjusted
ex. yt = α0 + βxt + γ1s1t + γ2s2t + γ3s3t + ϵt

c. Multicollinearity problem by dummies

d. Supurious Regression problem with common tendency or effect

2. Finite Distributed Lag (FDL) Models
: FDL model is good for estimtating lagged effects of variable(including dependent). Especially the effect
is unlikely instantaneous. ex. yt = α0 + δ0zt + δ1zt−1 + δ2zt−2 + ut

– FDLs are often more realistic than static models because they account for some dynamic behavior.

3. Models with Lagged Dependent Variables (ARMA(p,q)):

a. Autoregressive model: past outcomes on y affect current y. There are short-term effect and long-term
effect

b. OLS estimators are no longer unbiased(finite sample property). So use large-sample analysis(infinite
sample property, consistent, plim)

c. Moving Average: a succession of averages derived from successive segments (typically of constant
size and overlapping) of a series of values.

3. Finite-Sample Analysis of OLS for TS Data: Gauss Markov Assumptions for Time-Series

(A1) No Perfect Collinearity: rules out perfect linear relations among the explanatory variables. Near
multicollinearity can yield unreliable parameter

(A2) Linear in Parameters: Linear relation between explanatory variable and dependent variable E(ϵ) = 0

(A3) Relation between explanatory variables and error

∗ Zero conditional Mean: E(ut|X) = E(ut|x1, x2, ..., xt, ..., xT ), xt : row vector for each t
ut is uncorrelated with each xsj for all t and s, including t = s and all varables j is the index of
columns. (too Strong)

∗ Contemporaneous exogeneity(E(ut|X) = 0)
: There may be correlation between ut and xt+1. But it’s enough for large-sample properties
(consistency)

(A4) ∗ Homoskedasticity: Same Variances

∗ No serial Correlation: Correlations between errors should be zero

(A5) Normality: how does this assumption make exact inference
How is it possible? z − dist → χ2 − dist → F − dist

4. Gauss-Markov Theorem for TS
: Under (A1), (A2), (A3Rmi), (A4), the OLS estimators are BLUE(the best, linear, unbiased estimators)
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