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Differences between cross-sectional and time series data I

• Time series data come with a temporal ordering, usually from earliest
to latest.
• For many purposes, the ordering of the data is important.

• We cannot think of time series data as a random sample of units
(individuals, firms, schools, and so on) from a large population.
• Therefore, we cannot realistically impose random sampling (MLR.2)

when using time series data.
• In fact, time series data almost always exhibit correlation across time,

sometimes very strongly.
• To ensure standard inference applies, we will have to control the

dependence from being too strong (persistence).
• A sequence of random variables indexed by time, {yt}Tt=1, is called a
stochastic process or a time series process. A sample is one
realized path out of many possible paths the process could take.
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Differences between cross-sectional and time series data II

• For time series data at monthly or quarterly (or even weekly or daily)
frequencies, seasonality can be an issue.
• Examples: Christmas effect on expenditures, effectiveness of fertilizer

on production.
• It is fairly standard to include seasonal dummies (and interactions) to
deal with this.

yt = α0 + βxt + γ1s1t + γ2s2t + γ3s3t + εt

{s1t , s2t , s3t} are seasonal dummies
e.g ., s1t = 1, if t falls in 1st quarter, = 0 otherwise

• This is equivalent to running a regression of the deseasonalized series y
on the deseasonalized series x . ("Seasonally adjusted") This is due to
the "Partialling out" interpretation of Multiple Regression.
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Differences between cross-sectional and time series data III

• Many time series variables exhibit trends
• Examples: Exam score per study hour, GDP, and etc.

• When running regression using time series variables that are trending,
we should be careful not to confuse a common tendency to grow (or
fall) with that of a causal relationship (spurious regression problem).
• Including a time trend in our model may allow us to prevent this, e.g.,

(linear trend assumed)

yt = α0 + βxt + γt + εt

• Adding a time trend in our model is the same as working with
detrended series.
• Recall: "Partialling Out" interpretation of multiple regression.
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Spurious regression problem (example)
• Yule (1926) observed a strong correlation between the proportion of
UK marriages in church (ChurchMarr) and the UK mortality rate
(Mortality) using data for the years 1866-1911. The regression

Mortalityt = α0 + α1ChurchMarrt + ut

suggests a significant (positive) α1. (r = 0.9512)
• Obviously, it is very hard to explain how the proportion of marriages in

church can possibly effect the mortality rate ("Non-sense Correlations
in time-series").

• The high correlation, and significance of α1 is purely a result of
the common trending nature in both variables. (see graph next
page)

• When we run the regression

Mortalityt = α0 + α1ChurchMarrt + α2t + ut

we expect the significance of α1 to disappear.
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Spurious regression problem (example)

Figure: Correlation between standardized mortality per 1,000 persons in England and Wales
(circles), and the propertion of Church of England marriages per 1,000 of all marriages (line),
1866-1911. r = +0.9512.

• Yule, G.U. (1926): "Why do we somethimes get non-sense
correlations between time-series?" Journal of the Royal Statistical
Society, 89, 1-63
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Static Models I

• The simplest model with time series is static model, where yt
(dependent variable at time t) is explained by regressors at the same
time t.
• With one regressor zt , we have

yt = β0 + β1zt + ut for t = 1, ...,T

Example: Static Phillips Curve
Can consider the static Phillips curve:

inft = β0 + β1unemt + ut for t = 1, ...,T

where inft is, say, the annual rate of inflation during year t, and unemt is
annual unemployment rate during year t.
β1 attempts to measure the trade-off between inflation & unemployment.

Keith Lee Math & Stat for MBA Lecture 4 September 28, 2021 7 / 35



Static Models II

• Static models are generally used when we are interested in a
contemporaneous relationship.
• They cannot capture effects that take place with a lag.

• In general, static models are not good for forecasting.
• To forecast yT+1 at time T , we have to know zT+1 at time T . In

example: to forecast inflation in time T + 1, we would need to know
what unemployment is in time T + 1

inft = β0 + β1unemt + ut for t = 1, ...,T

• Moreover, it ignores the fact that usually past outcomes of y help
predict future values of y .

Keith Lee Math & Stat for MBA Lecture 4 September 28, 2021 8 / 35



Finite Distributed Lag (FDL) Models I

• Suppose change in z today can affect y up to two periods into the
future. This calls for a FDL model of order 2 (also known as AR(2))

yt = α0 + δ0zt + δ1zt−1 + δ2zt−2 + ut

• FDL model is good for estimating lagged effects of z . Recognizes that
people often react with a lag to policy changes.

Example: Personal Exemption and Fertility.
The effect of making it monetarily more attractive to have children - by
increasing the value of the personal exemption (pe) - is unlikely
instantaneous (biology). Allowing for a two-year effect, we may model the
general fertility rate (gfr) as:

gfrt = α0 + δ0pet + δ1pet−1 + δ2pet−2 + ut
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Finite Distributed Lag (FDL) Models II

Example: Minimum Wage and Employment.
Suppose we have monthly data on employment and the minimum wage.
We may expect that the effect of a change in the minimum wage will take
several months to have its full effect on employment.

• An FDL model of order q, FDL(q), or AR(q), is

yt = α0 + δ0zt + δ1zt−1 + δ2zt−2 + ...+ δqzt−q + ut

• As a practical matter, the choice of q can be hard. Often dictated by
frequency of data.
• With annual data, q is usually small. With monthly data, q is often

chosen as 12 or 24 or even higher, depending on how many months of
data we have.

• Under some assumptions we can use an F test to see if additional lags
are jointly significant.
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Finite Distributed Lag (FDL) Models III

yt = α0 + δ0zt + δ1zt−1 + δ2zt−2 + ...+ δqzt−q + ut

• δ0, the coefficient on the contemporaneous z , is called the
Short-Term Propensity(STP) = δ0

• It tells us the immediate change in y when z increases by one unit.
• Is the change permanent?

• The sum of all lag coefficients is called the
Long-Term Propensity(LTP) = δ0 + δ1 + ...+ δq

• LTP answers following thought experiment: Suppose z increases
permanently today (e.g., minimum wage increases by $1.00/hour
permanently): LTP is (ceteris paribus) change in y after change in z
has passed through all q time periods.
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Finite Distributed Lag (FDL) Models IV

• We can have more than one variable appear with multiple lags.

For example, a simple equation to explain how the Federal Reserve Bank
in the U.S. changes the Federal Funds Rate is

ffratet =α0 + δ0inft + δ1inft−1 + δ2inft−2

+ γ0gdpgapt + γ1gdpgapt−1 + γ2gdpgapt−2 + ut ,

where inft is the inflation rate and gdpgapt is the GDP gap (measured as
a percent).

• FDLs are often more realistic than static models (they typically
forecast better) because they account for some dynamic behavior.
• Nevertheless, FDL is not the most preferred for forecasting because

they do not allow lagged y ’s to affect current y .
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Models with Lagged Dependent Variables I

• With time series data, there is the possibility of allowing past
outcomes on y to affect current y . The simplest model is

yt = β0 + β1yt−1 + ut ,

• Called an autoregressive model of order 1, or AR(1).
• This simple model typically does not have much economic or policy

interest because we are just using lagged y to explain current y .
• We can add even more lags of y to explain yt .
• An AR(p) process is given by

yt = β0 + β1yt−1 + ...+ βpyt−p + ut

• Autoregressive models can be remarkably good at forecasting, even
compared with deep learning models (which is no more than a
computer exercise of non-linear regression). Why?

• AR order + coefficient - a joint problem
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Models with Lagged Dependent Variables II

• It is easy to add other explanatory variables along with a lag:

yt = β0 + β1yt−1 + β2zt + ut

• β2 measures the effect of changing zt on yt , holding yt−1 fixed. It is a
kind of short-term effect of z on y.

• Controlling for yt−1 while estimating the effect of zt can be effective
for estimating the causal effect of zt on yt : it recognizes that the
policy variable (zt) may be correlated with yt−1
• Since yt−1 is likely a relevant regressor, its omission will cause OVB

(more later) if zt is related to yt−1.
• The long-term effect of z on y is given by β2/(1− β1)

• Assumes |β1| < 1
• In the LT: y = β0 + β1y + β2z, rewriting yields y = β0

1−β1
+ β2

1−β1
z
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Models with Lagged Dependent Variables III

Example:
Consider

gempt = β0 + β1gempt−1 + β2gminwaget + ut

where gempt is, say, monthly employment growth in an economy, or sector
of the economy, and gminwaget the percentage growth in the minimum
wage.
β2 measures the effect of changing minimum wage growth on employment
growth this period, and we expect β2 ≤ 0.

• By controlling for gempt−1, we allow the possibility that gminwaget
reacts to past employment growth.
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Models with Lagged Dependent Variables IV

• Statistically, models with lagged dependent variables are more difficult
to study:
• OLS estimators are no longer unbiased (finite sample property) under

any assumption
• Therefore, use of large-sample analysis becomes very important.

• Unfortunately, large-sample analysis is trickier with time series data
because of correlation (dependence) across time.
• Recall: With cross-sectional data, we relied on random sampling. Here

we will need to restrict the dependence.
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Time Series Models - Summary

• Static Models

yt = β0 + β1zt + ut

• Contemponeous (instantaneous) effect
• Autoregressive Models - AR(2)

yt = β0 + β1zt + β2zt−1 + β3zt−2 + ut

• Capture effects that take place with a lag.
• Models with Lagged Dependent Variables - ARMA(1,2)

yt = β0 + β1yt−1 + β2zt + β3zt−1 + β4zt−2 + ut

• Allows lagged outcomes on y to directly affect current outcomes.
• Also called Autoregressive and Moving Average
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Finite-Sample Analysis of OLS for TS Data I

• Consider the time series process: {(yt , xt1, ..., xtk) : t = 1, ...,T} We
often use T to denote the sample size in time series.
• We explicitly use t to index time.

• OLS on time series data can be unbiased, but the assumptions needed
are pretty restrictive
• An important reason for this is that when using time series we cannot

maintain the assumption of random sampling. Time series data are
almost always correlated across time, sometimes very strongly.

• We review the assumptions used to derive the same kinds of
finite-sample properties (unbiasedness, variance calculations,
normality)
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Finite-Sample Analysis of OLS for TS Data II

• Gauss-Markov (GM) assumptions for Time-Series (TS)
• TS.1 No Perfect Collinearity

• Rules out perfect linear relations among the explanatory variables.
• High correlation among xtj ’s (problem of near multicollinearity) does

not violate this assumption but can yield imprecise parameter
estimates.
• This is particularly true in FDL models, such as

yt = α0 + δ0zt + δ1zt−1 + δ2zt−2 + ut

• If {zt} is slowly moving over time, then zt , zt−1, and zt−2 can be highly
correlated

• Hence, DL coefficients δj estimated imprecisely.
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Finite-Sample Analysis of OLS for TS Data III

• TS.2 Linear in Parameters.

yt = β0 + β1xt1 + β2xt2 + ...+ βkxtk + ut , t = 1, ...,T .

• Observe that we can write all of the previous examples as a time series
regression model by appropriate choice of xtj .
• For example, if

yt = α0 + δ1zt + δ2zt−1 + δ3zt−2 + ut

then

xt1 = zt , xt2 = zt−1, xt3 = zt−2

so there are k = 3 explanatory variables. The slopes βj(δj) are the
distributed lag parameters.
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Finite-Sample Analysis of OLS for TS Data IV

• TS.3 Zero Conditional Mean.

E(ut |x1, x2, ..., xt, ..., xT) ≡ E(ut |X) = 0 for each t

where xt = (xt1, ..., xtk) are the explanatory variables for yt and
X = (x1, x2, .., xT).
• The assumption ensures that the unobserved error is "uncorrelated"

with the explanatory variables
• Because we no longer assume independent observations, we need to

explicitly rule out correlation between ut and xsj even when the time
periods s and t do not match up.

• In practice, we ask whether ut is uncorrelated with each xsj for all t
and s, including t = s and all variables j = 1, ..., k

• TS.3 is often called strict exogeneity of {xt : t = 1, ...,T}.
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Finite-Sample Analysis of OLS for TS Data V

yt = β0 + β1xt1 + β2xt2 + ...+ βkxtk + ut , t = 1, ...,T

Theorem
( Unbiasedness of OLS for Time Series): Under Assumptions TS.1,
TS.2, and TS.3, the OLS estimators are unbiased

E(β̂j) = βj , j = 0, ..., k.

• Note: regressors {xtj} are allowed to be correlated across time.
• Also errors, {ut} are allowed to be correlated across time.
• What we are ruling out with TS.3 is correlation between xtj and us

for any t and s.
• Worry: Assumption TS.3 is often considered to be too strong.

Keith Lee Math & Stat for MBA Lecture 4 September 28, 2021 22 / 35



Finite-Sample Analysis of OLS for TS Data VI

• Strict exogeneity assumption rules out some practically important
situations

1 Models with lagged dependent variables.
• As soon as yt−1 is included among the regressors strict exogeneity fails.

2 Correlation of the error and future values of regressors.
• Consider

yt = α0 + δ0zt + δ1zt−1 + δ2zt−2 + ut

We may argue that we have included enough lags in the FDL to ensure
that ut is uncorrelated with all past z .

• It is possible (even likely) that zt+1 reacts to changes in the unobserved
part of yt (ut).
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Finite-Sample Analysis of OLS for TS Data VII

Example : Suppose we have an FDL relationship between inflation and the
federal funds rate:

inft = α0 + δ0ffratet + δ1ffratet−1 + δ2ffratet−2 + ut

If we assume two lags of the FF rate suffice, we need not worry about
correlation between ut and further lags of ffrate.
Nevertheless, we may be concerned about correlation between ut and
ffratet+1 if the Fed decides to respond to a positive shock to inflation at
time t (i.e., ut > 0) by increasing ffratet+1

• This would violate the assumption of strict exogeneity
• It may be more appropriate in this example to make the weaker

assumption (TS.3) of "contemporaneous" uncorrelatedness.
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Finite-Sample Analysis of OLS for TS Data VIII

• TS.3 Contemporaneous exogeneity

E(ut |xt) = 0

• This assumption implies uncorrelatedness between errors (ut) and
regressors (xt).
• If xt = (zt , zt−1, zt−2) , the assumption requires ut to be

uncorrelated with zt , zt−1 and zt−2.
• If xt = (zt , zt−1, zt−2) , the assumption requires ut to be

uncorrelated with yt−1, zt , zt−1 and zt−2.
• Contemporaneous exogeneity does not restrict correlations between the

error and explanatory variables across other time periods.
• In the same example, there may be correlation between ut and zt+1.

• While this assumption is not enough to ensure unbiasedness of OLS,
it will be enough for large-sample properties (e.g., consistency)
• Any insight on BigData?

Keith Lee Math & Stat for MBA Lecture 4 September 28, 2021 25 / 35



Finite-Sample Analysis of OLS for TS Data IX

• Unbiasedness says nothing about how precise the OLS estimators are.
• To obtain the familiar expressions for the variances of the OLS

estimators, we add two more assumptions: homoskedasticity and no
serial correlation.

• TS.4-1 Homoskedasticity.

Var(ut |x1, x2, ..., xt, ..., xT) = σ2 for each t

• Variance of ut cannot depend on xs for any s or change over time for
reasons we do not know.

• Some form of homoskedasticity is needed for usual variance formulas
and Gauss-Markov Theorem to hold.

• This version of violation is called "Hetero-skedasticity".
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Finite-Sample Analysis of OLS for TS Data X

• TS.4-2 No Serial Correlation.

Corr(ut , us |x1, x2, ..., xt, ..., xT) = 0 for all t 6= s

• For the usual OLS analysis to be valid with TS data, we must rule out
correlation in the errors over time (automatically satisified in
cross-sectional setting by random sampling).
• In practice, do not worry about the conditioning on x1, ..., xT. Just

consider Corr(ut , us).
• When TS.4-2 is violated, that is, when Corr(ut , us) 6= 0 for some (t, s)

pairs, the errors exhibit serial correlation or autocorrelation.
• In static models TS.4-2 is most likely to be violated: the dynamics will

then form part of the error term (our ignorance)
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Finite-Sample Analysis of OLS for TS Data XI

• Confusion can arise because there are three are three very different
kinds of "correlations" that may arise with time series regression.

1 The explanatory variables, xtj , might be correlated over time.
• This is almost always true. For example, the correlation between unemt

and unemt−1 is 0.752.
• We only ruled out perfect correlation in regressors by TS.2.

2 Correlation between xsj and ut .
• If the errors or any of the regressors are correlated, TS.3 is violated,

and OLS is biased. So we are ruling out this kind of correlation.
3 Correlation between us and ut

• This is the problem of serial correlation ruled out in TS.4-2.
• The presence of serial correlation itself does not cause bias in the OLS

estimators but it is imposed to obtain familiar variance formula.
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Finite-Sample Analysis of OLS for TS Data XII

Theorem
(OLS Variance Formulas for TS): Under Assumptions TS.1 to TS.4,
the usual OLS variance formulas are valid, i.e.,

Var(β̂j |X ) = σ2

SSTj(1− R2
j )

for j = 1, ..., k

• Assumptions GM.1 through GM.4 are the Gauss Markov
assumptions for time series data. Efficiency!

Theorem
(Gauss-Markov Theorem for TS): Under TS.1 through TS.4, the OLS
estimators are BLUE: the best, linear, unbiased estimators.
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Finite-Sample Analysis of OLS for TS Data XIII

• The standard error of β̂j is the same as before:

SE (β̂j) =

√√√√ σ̂2

SSTj(1− R2
j )

• As with CS regressions, this is reported as the default standard error.
• We use the unbiased estimator of σ2 = Var(ut)

σ̂2 = (T − k − 1)−1
T∑

t=1

û2
t

• Heteroskedasticity or serial correlation invalidate this simple
formula.
• We should use robust (HAC) standard errors if we are concerned about

the validity of TS.4-1 or TS.4-1 (Optional for MBA)
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Finite-Sample Analysis of OLS for TS Data XIV

• Finally, to enable us to perform exact inference, we add:
• TS.5 Normality. {ut} is independent of x1, .., xT and

ut ∼ i .i .d . Normal(0, σ2), t = 1, 2, ...,T

Theorem
(Statistical Inference for TS): Under TS.1 to TS.5, all of the statistical
inference procedures for the cross-sectional case carry over to time series.

• Under the null, our t statistics have tT−k−1 distribution and F
statistics have F distributions (usual confidence intervals hold).
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Summary Finite-Sample Analysis of OLS for TS Data

1 Under TS.1-3, OLS is unbiased. Strict exogeneity of regressors (TS.3)
is key but rules out some interesting cases.

2 If we add homoskedasticity (TS.4-1) and no serial correlation
(TS.4-2) assumptions, OLS is BLUE and usual variance formula
holds. Serial correlation (violation of TS.4-2) is often a problem.

3 If we add normality (TS.5), then exact inference is possible.
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Finite-Sample Analysis TS Data: Example I

EXAMPLE: Effects of Tax Policy on the U.S. Fertility Rate

• gfr is the number of children born per 1,000 women 15-44
• pe is the real value of the personal tax exemption,
• ww2 and pill are dummy variables (WW II, avail. birth control pill)

With a sample data, we estimate the static equation

ĝfr t = 98.68
(3.21)

+ .083
(.030)

pet − 24.24
(7.46)

ww2t − 31.59
(4.08)

pillt , T = 72, R2 = .473
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Finite-Sample Analysis TS Data: Example II

• ĝfr t = 98.68
(3.21)

+ .083
(.030)

pet −24.24
(7.46)

ww2t −31.59
(4.08)

pillt , T = 72, R2 = .473

• Under TS.1-5, we can reject H0 : βpe = 0 against the two-sided
alternative at less than the 1% significance level.

• The estimated effect is rather large: a $100 increase in pe increases the
estimated fertility rate by 8.3 children per thousand women.

• Fertility rates were much lower, on average, during WW II and after
the introduction of the birth control pill.
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Finite-Sample Analysis TS Data: Example III

• A finite distributed lag model with two lags of pe gives

ĝfr t = 95.87
(3.28)

+ .073
(.126)

pet − .0058
(.1557)

pet−1 − .034
(.126)

pet−2

−22.13
(10.13)

ww2t − 31.30
(3.98)

pillt , T = 70, R2 = .473

• The DL coefficients are very imprecisely estimated. None is statistically
different from zero using the t statistics.
• Joint F statistic for pe, pet−1, and pet−2 gives p-value = .012, so they

are jointly significant.
• The LTP equals .073− .0058 + .034 ≈ .101.

• Gives the long-run increase in gfr if pe increases permanently by $1
• Its t statistic (obtained using the lincom command) is 3.38. So we

estimate a strong long-run effect (roughly 10 children per 1,000 women
for an increase in pe of $100).

• Its 95% CI is about [.041, .160].
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