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Endogeneity (Overview) I

• There may be data scientific reasons why we might expect that the
errors and regressors are correlated.
• In the presence of correlation between errors and regressors

E(u|X ) 6= 0

• A serious violation of the Gauss-Markov assumptions (A3Rmi or
A3Rsru)

• The problem is called Endogeneity: a key concept in data scientific
applications for (almost all) high-noise data. (Thus, all real world
non-mechanical data)
• A regressor x with Cov(x , u) 6= 0 is called endogenous regressor.
• A regressor x with Cov(x , u) = 0 is called exogenous regressor.
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Endogeneity (Overview) II

• What do the "endogeneity" and "exogeneity" mean?
• Endogeneity can arise for a number of reasons

• lagged dependent variables in the presence of autocorrelation in the
error term

• omitted variables (in general, model mis-specification)
• measurement errors in the regressors
• simultaneity

• Correlation between errors and regressors is a serious GM violation as
it will make the OLS estimator biased and inconsistent.
• If OLS is biased (even more if inconsistent), the regression is useless
(except certain cases)
• In real world, almost all data generating processes (DGP) have a
certain level of intrinsic endogeneity
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Endogeneity (Overview) III

• We shouldn’t be surprised that our OLS estimators are bad if there is
correlation between the errors and regressors

yi = β0 + β1xi1 + ...+ βkxik + ui , E(ui) = 0

• The F.O.Cs that define our OLS estimator:
n∑

i=1
xij ûi = 0 for all j = 0, ..., k

• These requirements only make sense if

E(xijui) = 0 for all j = 0, ..., k

• Intuition: 1
n

∑n
i=1 ûi = 0 is the sample analogue of the requirement

that E(xijui) = 0; Cov(xijui) = E(xijui)− E(xij)E(ui) = E(xijui)
• Let us consider the bivariate regression setting here
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Endogeneity (Overview) IV

• If we think one or more explanatory variables in a model is
endogenous, we have basically two choices.

1) Collect good controls in the hope that the endogenous explanatory
variable becomes exogenous.
• Adding more controls allows us to control for confounders - needed
for causal interpretation.
• Adding additional lags (explanatory variables) in dynamic time series
models may help remove any remaining dependence in the errors.
• Adding more controls may remove aspects from our ignorance, which
our errors represent, that gave rise to violations of our GM
assumptions, such as endogeneity, autocorrelation and
heteroskedasticity.
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Endogeneity (Overview) V

2) Find one or more instrumental variables to deal with the endogenous
explanatory variable.
• The idea of the estimator is to replace the “bad" FOCs of OLS with
conditions that are reasonable.
• By imposing that instruments are uncorrelated with the error
E(ziui) = 0 (validity, instrument exogeneity), we can use their sample
analogues to define our new estimator

n∑
i=1

zi ûi = 0

• Because of this, our IV estimator (like OLS) can be viewed as
"method of moment estimator (optional)".
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Side Note: A method of moment estimator

An estimator that is defined by expectation conditions
• If E(AiBi) = 0, it means 1

n
∑n

i=1 AiBi = 0, when n→∞
• In other words, if we have large number of independent data points
for Ai and Bi , then sum of the product converges to 0
• (Optional) If the underlying distribution of y is non-Gaussian, in
general, any estimators from method of moments are more efficient
than Least Squares.
• (Optional) Due to the flexibility of MoM, when underlying
distribution is unavailable, researchers tend to reply on MoM for all
possible non-linear estimators
• (Optional) Generalized version of MoM (GMM) is a comparable
estimator to non-parametric estimators, such as support vector based
and neural net based "Machine learning (ML)" estimators, as GMM
provides variance testing while ML can’t.
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Motivation: Omitted Variables in a Simple Regression Model
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Correlatedness between errors and regressors I

EXAMPLE: Estimating the return to education

lwage = β0 + β1educ + u, Cov(educ, u) 6= 0

Since u contains abil , OLS will give biased/inconsistent estimators
• Omitting a relevant variable, say ability, causes this correlation
between the errors and regressors (ability and educ are correlated!)
• OLS imposes (FOC)

1
n

n∑
i=1

ûi = 0; 1
n

n∑
i=1

ûieduci = 0

(sample analogues of E(ui) = 0; E(uieduci) = 0)
• This is clearly wrong if E(uieduci) 6= 0!

[Cov(ui , educi) = E(uieduci)− E(ui)E(educi) = E(uieduci)]
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Correlatedness between errors and regressors - OLS vs IV

• We discuss our IV estimator in the bivariate model in detail.
• We show that the IV has the desirable (large sample property) of
consistency, even though IV estimators generally are biased (finite
sample property).
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Correlatedness between errors and regressors II

EXAMPLE: Estimating the return to education (MROZ.dta)

lwage = β0 + β1educ + u, Cov(educ, u) 6= 0

Since u contains abil , OLS will give biased/inconsistent estimators

• We should try to look for an instrument (z) that will give us a
condition that will allow us to estimate β0 and β1 consistently.
• OLS imposes (FOC)

1
n

n∑
i=1

ûi = 0; 1
n

n∑
i=1

ûizi = 0

• Implicitly that means that our instrument (z) needs to be uncorrelated
with the error (u), E(uizi) = 0 Instrument VALIDITY.

• In addition, the instrument needs to be correlated with the endogenous
regressor, Cov(educi , zi) 6= 0 Instrument RELEVANCE.
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IV Example - Returns to Education I

EXAMPLE: Estimating the return to education

lwage = β0 + β1educ + u, Cov(educ, u) 6= 0

• Let us consider mother’s education (motheduc) as instrument:
• Relevance: Cov(educ,motheduc) 6= 0.

• Likely to be satisfied.
• Instrument relevance is testable.
• Can test H0 : π1 = 0 in

educ = π0 + π1motheduc + v

use large-sample inference using t-statistic.
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IV Example - Returns to Education II

EXAMPLE: Estimating the return to education

lwage = β0 + β1educ + u, Cov(educ, u) 6= 0

• Let us consider mother’s education (motheduc) as instrument:
• Validity(instrument exogeneity): Cov(motheduc, u) ?= 0.

• Requires motheduc to be uncorrelated with child’s ability (omitted
variable included in u)

• Unlikely to be satisfied
• Instrument validity is not testable unless we have more instruments

than we need.
• Could sibs (number of siblings) be better?
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IV Example - Returns to Education III

• By IV estimation,
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IV Example - Returns to Education IV

• IV estimate of return to education is much lower than the OLS
estimate.
• Suggests that the OLS estimate is too high, which is consistent with
OVB discussion (OLS estimate also captures the indirect effect that
ability has on wages)
• Nevertheless: The standard error of our IV estimate is more than
twice that of the OLS SEs. The difference may therefore not be
statistically significant!
• We can use large-sample inference using t-statistics and confidence
intervals.
• (asymptotic) standard errors reported rely on a homoskedasticity

assumption, and robust standard errors can be used instead
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IV Estimation - Summary

yi = β0 + β1xi + ui with E(ui) = 0 but E(uixi) 6= 0

• We need to find one instrument for our "bad" (endogenous) regressor
xi that satisfies the following requirements
• Cov(zi , ui) ≡ E(ziui) = 0 ← validity of our instrument
• Cov(zi , ui) 6= 0 ← relevance of our instrument
• We have as many instruments as endogenous regressors: exact
identifiation.
• We can uniquely define our true parameters in terms of these moment

conditions

β1 = Cov(zi , yi )
Cov(zi , xi )

and β0 = E(yi )− β1E(xi )

• Our IV estimator uses sample analogues of the population moments
• Our IV estimator is a Method of Moments estimator!!
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IV estimation in the Multiple Regression Model
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Correlatedness between errors and regressors: Problem

• Consider the following model

yi = β0 + β1xi1 + β2xi2 + ui ; E(ui) = E(uixi1) = 0, but E(uixi2) 6= 0

• In the linear regression model, OLS imposes (FOC)

1
n

n∑
i=1

ûi = 0; 1
n

n∑
i=1

ûixi1 = 0; 1
n

n∑
i=1

ûixi2 = 0

(sample analogues of E(ui) = 0; E(uixi1) = 0; E(uixi2) = 0)
• If E(uixi2) 6= 0, it is clearly wrong to use OLS again.
• The OLS parameter estimates will in general be biased and

inconsistent.
• Correlation between the errors and one of the explanatory variables

in general affects all OLS parameter estimates.
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Correlatedness between errors and regressors: Solution

• Consider the following model

yi = β0 + β1xi1 + β2xi2 + ui ; E(ui) = E(uixi1) = 0, but E(uixi2) 6= 0

• We need to look for an instrument for xi2 that will give us a condition
that will allow us to estimate β0, β1 and β2 consistently.
• Recall OLS imposes (FOC)

1
n

∑n
i=1 ûi = 0; 1

n
∑n

i=1 ûixi1 = 0; 1
n

∑n
i=1 ûixi2 = 0

• Instead, we should use
1
n

∑n
i=1 ûi = 0; 1

n
∑n

i=1 ûixi1 = 0; 1
n

∑n
i=1 ûizi = 0

• We need as many conditions as we have unknown parameters!
• Our instrument for xi2 cannot be xi1. Why?
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IV Estimation - Summary
Multivariate Regression Model

yi = β0 + β1xi1 + β2xi2 + ui with E(ui) = E(uixi1) = 0, but E(uixi2) 6= 0

• We need to find one instrument for our "bad" regressor xi2 that
satisfies the following requirements
• Cov(zi , ui) ≡ E(ziui) = 0 ← validity of our instrument
• Cov(zi , xi2) 6= 0 ← relevance of our instrument
• zi cannot be xi1 ← exclusion requirement
• Together these three requirements give us again exact identification

• We can uniquely define our true parameters (β0, β1, β2) using the three
moment conditions E(ui ) = E(ui xi1) = E(ui zi ) = 0

• Our IV estimator again uses the sample analogues
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Two Stage Least Squares
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Overidentified Model I
IV estimation when there are more instruments than needed

yi = β0 + β1zi + ui with E(ui) = 0 but E(uixi) 6= 0

• Say, we have two instruments for xi : z1i and z2i

E(ui) = E(zi1ui) = E(zi2ui) = 0

• Both instruments satisfy our usual requirements
• Cov(zij , ui ) ≡ E(zijui ) = 0, j = 1, 2 ← validity of our instruments
• Cov(zij , xi ) 6= 0, j = 1, 2 ← relevance of our instrument

• In that case we can use three conditions
1
n

∑n
i=1 ûi = 0; 1

n
∑n

i=1 ûixi1 = 0; 1
n

∑n
i=1 ûixi2 = 0

• We have more instruments than we need to uniquely estimate β0 and
β1. This is a situation of overidentification.
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Overidentified Model II
IV estimation when there are more instruments than needed

• Both

β̂
(1)
1,IV = Sample Cov(zi1, yi)

Sample Cov(zi1, xi)
and β̂

(2)
1,IV = Sample Cov(zi2, yi)

Sample Cov(zi2, xi)

are consistent estimates for β1!
• Which one should we use?

• Both are consistent!
• Need to look at the precision of IV estimators.
• How does Var(β̂(1)

1,IV ) compare with Var(β̂(2)
1,IV )
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Variance of IV estimator

yi = β0 + β1xi + ui with E(ui) but E(uixi) 6= 0

• Let us consider some details of the precision of β̂1,IV
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Variance of IV estimator - comment

• When using the IV estimator we use large sample inference.
• The asymptotic variance of β̂1,IV , under the assumption that

Var(u|z) = σ2 equals:

Var(β̂1,IV ) = σ2

n · Var(xi) · Corr(xi , zi)2

• When replacing the population moments with the sample analogues
this equals the result we just discussed.

• We may use robust standard errors too (deal with any concern we
have about homoskedasticity).
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Overidentified Model II
IV estimation when there are more instruments than needed

• Both

β̂
(1)
1,IV = Sample Cov(zi1, yi)

Sample Cov(zi1, xi)
and β̂

(2)
1,IV = Sample Cov(zi2, yi)

Sample Cov(zi2, xi)

are consistent estimates for β1!
• Both are consistent!

• Based on the variance, we should choose the estimator that uses the
instrument that has the higher correlation with xi .
• But, that approach discards additional information, which is not a
good idea!
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Correlatedness between errors and regressors III
IV estimation when there are more instruments than needed

• We want to choose our instrument(s) optimally, and consider

β̂
(opt)
1,IV = Sample Cov(zopt

i , yi)
Sample Cov(zopt

i , xi)

• zopt
i is the linear combination of zi1 and zi2 that has the strongest
correlation with xi (precision)

• zopt
i is obtained by regressing xi on all instruments (reduced form) and
obtain its fitted values

zopt
i = x̂i

• Two Stage Least Squares provides us with this estimator.
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Two Stage Least Squares
IV estimation when there are more instruments than needed

yi = β0 + β1xi + ui with E(ui) = 0 but E(uixi) 6= 0

• Step 1: Run OLS on

xi = π0 + π1zi1 + π2zi2 + vi

and obtain the fitted values: x̂i = π̂0 + π̂1zi1 + π̂2zi2
• Step 2: Run OLS on

yi = β0 + β1x̂i + ei

to obtain 2SLS estimators β̂0,2SLS and β̂1,2SLS
• If you do the second step manually, you will need to correct the

standard errors. But most stat packages provide automatic correction.
• Reason: The correct residuals are yi − β̂0,2SLS − β̂1,2SLSxi , not

yi − β̂0,2SLS − β̂1,2SLS x̂i
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2SLS for general case

• Consider multiple linear regression

y = β0 + β1x1 + ...+ βkxk + u with E(u) = 0, E(x1u) 6= 0

and all other regressors are exogenous E(x2u) = .. = E(xku) = 0.
• Suppose we have two IV’s for x1, z1 and z2

Cov(z1, x1) 6= 0, Cov(z2, x1) 6= 0, E(z1u) = 0, E(z2u) = 0
• Step 1: Get fitted values x̂1, by running OLS on

x1 = π0 + π1z1 + π2z2 + γ2x2 + ...+ γkxk + v
• Step 2: Obtain the 2SLS estimates, by running OLS on

y = β0 + β1x̂1 + β2x2 + ...+ βkxm + e
• In both stages, exogenous regressors x2, ..., xk should be added.
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IV Example - Returns to Education III

EXAMPLE: Estimating the return to education

lwage = β0 + β1educ + β2gexpr + β3gexpr2 + u, Cov(educ, u) 6= 0

• Consider both motheduc and fatheduc as instruments for educ. Let
us assume they are valid.
• Step 1: Estimate the reduced form

educ = π0 + π1motheduc + π2fatheduc + π3gexpr + π4gexpr2 + v
(Step 1)

• We can test the relevance by testing the joint hypothesis
H0 : π1 = π2 = 0

• We need to ensure that instruments help explain educ after controlling
for all other exogenous variables.

• Step 2: Using the fitted values of reduced form, regress

lwage = β0 + β1êduc + β2gexpr + β3gexpr2 + e (Step 2)
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IV Example - Returns to Education IV

• 2SLS implemented
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IV Example - Returns to Education V

• Step 1:

• Step 2:

• Manually implementing the second step will give incorrect standard
errors (Need correction in the second step)

• Reason: The correct residuals are yi − β̂0,2SLS − β̂1,2SLS − ...
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