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Differences between cross-sectional and time series data |

® Time series data come with a temporal ordering, usually from earliest
to latest.

® For many purposes, the ordering of the data is important.

® \We cannot think of time series data as a random sample of units
(individuals, firms, schools, and so on) from a large population.
® Therefore, we cannot realistically impose random sampling (MLR.2)
when using time series data.

® |In fact, time series data almost always exhibit correlation across time,
sometimes very strongly.

® To ensure standard inference applies, we will have to control the
dependence from being too strong (persistence).
* A sequence of random variables indexed by time, {y;}/ ;, is called a
stochastic process or a time series process. A sample is one
realized path out of many possible paths the process could take.
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Differences between cross-sectional and time series data Il

® For time series data at monthly or quarterly (or even weekly or daily)
frequencies, seasonality can be an issue.

® Examples: Christmas effect on expenditures, effectiveness of fertilizer
on production.

e |t is fairly standard to include seasonal dummies (and interactions) to
deal with this.

Yt = ag + Bxe + 7181t + V282t + 1383t + €t
{s1t, Sot, S3¢} are seasonal dummies

e.g., sit =1, if t falls in 1st quarter, = 0 otherwise

® This is equivalent to running a regression of the deseasonalized series y
on the deseasonalized series x. ("Seasonally adjusted") This is due to
the "Partialling out" interpretation of Multiple Regression.
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Differences between cross-sectional and time series data Il|

® Many time series variables exhibit trends
® Examples: Exam score per study hour, GDP, and etc.
® When running regression using time series variables that are trending,
we should be careful not to confuse a common tendency to grow (or
fall) with that of a causal relationship (spurious regression problem).
® Including a time trend in our model may allow us to prevent this, e.g.,
(linear trend assumed)

yi = ag + Bxe +yt + €

® Adding a time trend in our model is the same as working with

detrended series.
® Recall: "Partialling Out" interpretation of multiple regression.

4/35
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Spurious regression problem (example)

® Yule (1926) observed a strong correlation between the proportion of
UK marriages in church (ChurchMarr) and the UK mortality rate
(Mortality) using data for the years 1866-1911. The regression

Mortality; = ag + a1 ChurchMarr; + uy

suggests a significant (positive) a1. (r = 0.9512)

® Obviously, it is very hard to explain how the proportion of marriages in
church can possibly effect the mortality rate ("Non-sense Correlations
in time-series").

® The high correlation, and significance of «a; is purely a result of
the common trending nature in both variables. (see graph next
page)

® When we run the regression

Mortality; = ag + oy ChurchMarry + aot + u;

we expect the significance of «a; to disappear.
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Spurious regression problem (example)
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Figure: Correlation between standardized mortality per 1,000 persons in England and Wales
(circles), and the propertion of Church of England marriages per 1,000 of all marriages (line),
1866-1911. r = 40.9512.

® Yule, G.U. (1926): "Why do we somethimes get non-sense
correlations between time-series?" Journal of the Royal Statistical
Society, 89, 1-63
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N
Static Models |

® The simplest model with time series is static model, where y;
(dependent variable at time t) is explained by regressors at the same
time t.

® With one regressor z; , we have

ve=0Bo+ Prze+uy for t=1,...,T

Example: Static Phillips Curve
Can consider the static Phillips curve:

infy = Bo + Brunem;y + uy for t=1,..., T

where inf; is, say, the annual rate of inflation during year t, and unem; is
annual unemployment rate during year t.
[1 attempts to measure the trade-off between inflation & unemployment.
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N
Static Models Il

e Static models are generally used when we are interested in a
contemporaneous relationship.

® They cannot capture effects that take place with a lag.
® |n general, static models are not good for forecasting.

® To forecast yr,1 at time T, we have to know zr,; at time T. In
example: to forecast inflation in time T + 1, we would need to know
what unemployment is in time T + 1

inf = Bo + Brunem; + uy for t=1,... T

® Moreover, it ignores the fact that usually past outcomes of y help
predict future values of y.
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|
Finite Distributed Lag (FDL) Models |

® Suppose change in z today can affect y up to two periods into the
future. This calls for a FDL model of order 2 (also known as AR(2))

Yi = ag + 002 + 012¢—1 + 02Zt—2 + U;

® FDL model is good for estimating lagged effects of z. Recognizes that
people often react with a lag to policy changes.
Example: Personal Exemption and Fertility.

The effect of making it monetarily more attractive to have children - by
increasing the value of the personal exemption (pe) - is unlikely
instantaneous (biology). Allowing for a two-year effect, we may model the
general fertility rate (gfr) as:

gfre = ag + doper + d1per—1 + doper—n + ut
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|
Finite Distributed Lag (FDL) Models I

Example: Minimum Wage and Employment.

Suppose we have monthly data on employment and the minimum wage.
We may expect that the effect of a change in the minimum wage will take
several months to have its full effect on employment.

® An FDL model of order q, FDL(q), or AR(q), is

Vi = oo+ 002 +012t—1 + 022t + ... + 0qZt—q + U;

® As a practical matter, the choice of g can be hard. Often dictated by
frequency of data.
® With annual data, g is usually small. With monthly data, q is often
chosen as 12 or 24 or even higher, depending on how many months of
data we have.
® Under some assumptions we can use an F test to see if additional lags

are jointly significant.
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|
Finite Distributed Lag (FDL) Models Il

yr =g + 00zt + 0121 + 02z¢—2 + ... + 5th_q + ug

® o, the coefficient on the contemporaneous z, is called the
Short-Term Propensity(STP) = Jp

® |t tells us the immediate change in y when z increases by one unit.
® |s the change permanent?

® The sum of all lag coefficients is called the
Long-Term Propensity(LTP) = 6o + 01 + ... + dq

® LTP answers following thought experiment: Suppose z increases
permanently today (e.g., minimum wage increases by $1.00/hour
permanently): LTP is (ceteris paribus) change in y after change in z
has passed through all g time periods.
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|
Finite Distributed Lag (FDL) Models IV

® \We can have more than one variable appear with multiple lags.

For example, a simple equation to explain how the Federal Reserve Bank
in the U.S. changes the Federal Funds Rate is

ffrate; =g + dginfy + 01infi—1 + d2infi_»
+ yogdpgap: + v1g8dpgap:—1 + Yv28dpgap:—2 + u,

where inf; is the inflation rate and gdpgap; is the GDP gap (measured as
a percent).

® FDLs are often more realistic than static models (they typically
forecast better) because they account for some dynamic behavior.

® Nevertheless, FDL is not the most preferred for forecasting because
they do not allow lagged y's to affect current y.
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-
Models with Lagged Dependent Variables |

e With time series data, there is the possibility of allowing past
outcomes on y to affect current y. The simplest model is

ye = Bo + Biye—1 + ug,

¢ Called an autoregressive model of order 1, or AR(1).
® This simple model typically does not have much economic or policy
interest because we are just using lagged y to explain current y.
® We can add even more lags of y to explain y; .
® An AR(p) process is given by

Yt = Bo+ Biyi—1+ ... + BpYe—p + Ut

® Autoregressive models can be remarkably good at forecasting, even
compared with deep learning models (which is no more than a
computer exercise of non-linear regression). Why?

® AR order + coefficient - a joint problem
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-
Models with Lagged Dependent Variables Il

® |t is easy to add other explanatory variables along with a lag:

Ye = Bo + B1yi—1 + Bz + u;

® (3, measures the effect of changing z; on y; , holding y;_; fixed. It is a
kind of short-term effect of z on y.
® Controlling for y;_1 while estimating the effect of z; can be effective
for estimating the causal effect of z; on y; : it recognizes that the
policy variable (z;) may be correlated with y;_;
® Since y:_1 is likely a relevant regressor, its omission will cause OVB
(more later) if z; is related to y;—_1.
® The long-term effect of z on y is given by 35/(1 — 1)
® Assumes |f1] < 1

® Inthe LT: y = Bo + Biy + B2z, rewriting yields y = 15051 + 16%12
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-
Models with Lagged Dependent Variables IlI

Example:

Consider

gemp; = Po + f18empe—1 + [Pogminwage;: + u;

where gemp; is, say, monthly employment growth in an economy, or sector
of the economy, and gminwage; the percentage growth in the minimum
wage.

B> measures the effect of changing minimum wage growth on employment
growth this period, and we expect 8, < 0.

® By controlling for gemp;_1, we allow the possibility that gminwage;
reacts to past employment growth.
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-
Models with Lagged Dependent Variables IV

e Statistically, models with lagged dependent variables are more difficult
to study:

® OLS estimators are no longer unbiased (finite sample property) under
any assumption

® Therefore, use of large-sample analysis becomes very important.

® Unfortunately, large-sample analysis is trickier with time series data
because of correlation (dependence) across time.

® Recall: With cross-sectional data, we relied on random sampling. Here
we will need to restrict the dependence.
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Time Series Models - Summary

e Static Models

ye = Bo + P1z: + uz

® Contemponeous (instantaneous) effect

¢ Autoregressive Models - AR(2)

ye = Bo+ 1zt + Poze—1 + B3zt—2 + Ut

® Capture effects that take place with a lag.
® Models with Lagged Dependent Variables - ARMA(1,2)

Ye = Bo + B1yi—1 + Bozt + B3ze—1 + Paze—o + ut

® Allows lagged outcomes on y to directly affect current outcomes.
® Also called Autoregressive and Moving Average
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-
Finite-Sample Analysis of OLS for TS Data |

e Consider the time series process: {(yt, X¢1, ..., Xek) - t=1,..., T} We
often use T to denote the sample size in time series.

® We explicitly use t to index time.

® OLS on time series data can be unbiased, but the assumptions needed
are pretty restrictive

® An important reason for this is that when using time series we cannot
maintain the assumption of random sampling. Time series data are
almost always correlated across time, sometimes very strongly.
® \We review the assumptions used to derive the same kinds of
finite-sample properties (unbiasedness, variance calculations,
normality)
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-
Finite-Sample Analysis of OLS for TS Data Il

¢ Gauss-Markov (GM) assumptions for Time-Series (TS)
e TS.1 No Perfect Collinearity

® Rules out perfect linear relations among the explanatory variables.

® High correlation among x;'s (problem of near multicollinearity) does
not violate this assumption but can yield imprecise parameter
estimates.

® This is particularly true in FDL models, such as
Ye = ao + 00zt + 612e—1 + 62ze—2 + Ut

® If {z} is slowly moving over time, then z;, z;_1, and z;_> can be highly
correlated
® Hence, DL coefficients ¢; estimated imprecisely.
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-
Finite-Sample Analysis of OLS for TS Data Ill

e TS.2 Linear in Parameters.

ye = Bo + Bixer + Boxeo 4+ oo+ BuxXek + Uy, t=1,..,T.

® Observe that we can write all of the previous examples as a time series
regression model by appropriate choice of xy.

® For example, if
Ye =0+ 012t + 02z: 1 + 93ze 2 + Ur
then
Xtl = Zt, Xt2 = Zt—1, Xt3 = Zt-2

so there are k = 3 explanatory variables. The slopes 3;(d;) are the
distributed lag parameters.
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-
Finite-Sample Analysis of OLS for TS Data IV

e TS.3 Zero Conditional Mean.
E(ut|x1,X2, -y Xty -y XT) = E(0|X) = 0 for each t

where x¢ = (X¢1, ..., Xtk ) are the explanatory variables for y; and
X = (X], X2, ..y XT).
® The assumption ensures that the unobserved error is "uncorrelated"
with the explanatory variables
® Because we no longer assume independent observations, we need to
explicitly rule out correlation between u; and xg; even when the time
periods s and t do not match up.
® In practice, we ask whether u; is uncorrelated with each xg; for all t
and s, including t = s and all variables j =1, ..., k
® TS.3is often called strict exogeneity of {x;: t =1,..., T}.

Math & Stat for MBA Lecture 4 September 28, 2021 21/35



-
Finite-Sample Analysis of OLS for TS Data V

Yt = Bo + Bixer + Boaxeo + oo+ Buxex +ug, t=1,..,T

Theorem

( Unbiasedness of OLS for Time Series): Under Assumptions TS.1,
TS.2, and TS.3, the OLS estimators are unbiased

E(BJ) =B, j=0,..,k

® Note: regressors {x} are allowed to be correlated across time.
® Also errors, {u;} are allowed to be correlated across time.

® What we are ruling out with TS.3 is correlation between x;; and us
for any t and s.

e Worry: Assumption TS.3 is often considered to be too strong.
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-
Finite-Sample Analysis of OLS for TS Data VI

e Strict exogeneity assumption rules out some practically important
situations

® Models with lagged dependent variables.

® As soon as y;_1 is included among the regressors strict exogeneity fails.
® Correlation of the error and future values of regressors.
® Consider

Ve = ag + 00z + 0121 + 022¢—2 + Uy

We may argue that we have included enough lags in the FDL to ensure
that wu; is uncorrelated with all past z.

® |t is possible (even likely) that z;1; reacts to changes in the unobserved
part of y; (u).
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-
Finite-Sample Analysis of OLS for TS Data VII

Example : Suppose we have an FDL relationship between inflation and the
federal funds rate:

infy = oy + dgffrate; + 01 ffrate;_1 + Ooffrates_o + uy

If we assume two lags of the FF rate suffice, we need not worry about
correlation between ut and further lags of ffrate.

Nevertheless, we may be concerned about correlation between u; and
ffratey 1 if the Fed decides to respond to a positive shock to inflation at
time t (i.e., ur > 0) by increasing ffrate;+1

® This would violate the assumption of strict exogeneity

® |t may be more appropriate in this example to make the weaker
assumption (TS.3) of "contemporaneous" uncorrelatedness.
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-
Finite-Sample Analysis of OLS for TS Data VIII

e TS.3 Contemporaneous exogeneity

E(ut|xt) =0

® This assumption implies uncorrelatedness between errors (u;) and
regressors (x).
® If x; = (z,2—1,2—2) , the assumption requires u; to be
uncorrelated with z;, z;_; and z_».
® If xx = (z, zt—1, 2z:—2) , the assumption requires u; to be
uncorrelated with y;_1, 2z, 2,1 and z_».
® Contemporaneous exogeneity does not restrict correlations between the
error and explanatory variables across other time periods.
® In the same example, there may be correlation between vy and zy41.

e While this assumption is not enough to ensure unbiasedness of OLS,
it will be enough for large-sample properties (e.g., consistency)

® Any insight on BigData?
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-
Finite-Sample Analysis of OLS for TS Data IX

® Unbiasedness says nothing about how precise the OLS estimators are.
® To obtain the familiar expressions for the variances of the OLS
estimators, we add two more assumptions: homoskedasticity and no
serial correlation.

e TS.4-1 Homoskedasticity.

Var(ug|x1,X2, ..., X, ..., xT) = o2 for each t

® Variance of u; cannot depend on xs for any s or change over time for
reasons we do not know.

® Some form of homoskedasticity is needed for usual variance formulas
and Gauss-Markov Theorem to hold.

® This version of violation is called "Hetero-skedasticity".
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-
Finite-Sample Analysis of OLS for TS Data X

e TS.4-2 No Serial Correlation.

Corr(uz, us|X1,X2, ..., Xt, ...,xT) = Ofor all t # s

® For the usual OLS analysis to be valid with TS data, we must rule out
correlation in the errors over time (automatically satisified in
cross-sectional setting by random sampling).
® |n practice, do not worry about the conditioning on xi, ..., xt. Just
consider Corr(uy, us).
® When TS.4-2 is violated, that is, when Corr(u;, us) # 0 for some (t,s)
pairs, the errors exhibit serial correlation or autocorrelation.
® |n static models TS.4-2 is most likely to be violated: the dynamics will
then form part of the error term (our ignorance)
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-
Finite-Sample Analysis of OLS for TS Data Xl

e Confusion can arise because there are three are three very different
kinds of "correlations" that may arise with time series regression.
@ The explanatory variables, x;;, might be correlated over time.
® This is almost always true. For example, the correlation between unem,
and unem;_1 is 0.752.
® We only ruled out perfect correlation in regressors by TS.2.

@ Correlation between xg; and u;.

® |f the errors or any of the regressors are correlated, TS.3 is violated,
and OLS is biased. So we are ruling out this kind of correlation.

© Correlation between ug and u;

® This is the problem of serial correlation ruled out in TS.4-2.
® The presence of serial correlation itself does not cause bias in the OLS
estimators but it is imposed to obtain familiar variance formula.
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Finite-Sample Analysis of OLS for TS Data XII

Theorem

(OLS Variance Formulas for TS): Under Assumptions TS.1 to TS.4,
the usual OLS variance formulas are valid, i.e.,

0.2

Var(@‘X) = m for _j: 1,...7 k
J

e Assumptions GM.1 through GM.4 are the Gauss Markov
assumptions for time series data. Efficiency!

Theorem

(Gauss-Markov Theorem for TS): Under TS.1 through TS.4, the OLS
estimators are BLUE: the best, linear, unbiased estimators.
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-
Finite-Sample Analysis of OLS for TS Data XIlI

® The standard error of BJ is the same as before:

82

SST,(1—RD)

SE(5)

® As with CS regressions, this is reported as the default standard error.
® We use the unbiased estimator of 6° = Var(u)
T
F=(T—k-1)""Y @
t=1
® Heteroskedasticity or serial correlation invalidate this simple
formula.

® We should use robust (HAC) standard errors if we are concerned about
the validity of TS.4-1 or TS.4-1 (Optional for MBA)
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-
Finite-Sample Analysis of OLS for TS Data XIV

e Finally, to enable us to perform exact inference, we add:

® TS.5 Normality. {u;} is independent of x3,..,xT and

up ~ i.i.d. Normal(0,6%), t=1,2,... T

Theorem

(Statistical Inference for TS): Under TS.1 to TS.5, all of the statistical
inference procedures for the cross-sectional case carry over to time series.

® Under the null, our t statistics have t1_x_1 distribution and F
statistics have F distributions (usual confidence intervals hold).
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-
Summary Finite-Sample Analysis of OLS for TS Data

@ Under TS.1-3, OLS is unbiased. Strict exogeneity of regressors (TS.3)
is key but rules out some interesting cases.

@® If we add homoskedasticity (TS.4-1) and no serial correlation
(TS.4-2) assumptions, OLS is BLUE and usual variance formula
holds. Serial correlation (violation of TS.4-2) is often a problem.

© If we add normality (TS.5), then exact inference is possible.
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-
Finite-Sample Analysis TS Data: Example |

EXAMPLE: Effects of Tax Policy on the U.S. Fertility Rate

CHART 1

3

]

1909 1929 1949 199 1989
Source: National Center for Health Statistics

g8

]

irths per 1,000 We
8

Bi
&

® gfr is the number of children born per 1,000 women 15-44
® pe is the real value of the personal tax exemption,
® ww? and pill are dummy variables (WW I, avail. birth control pill)

With a sample data, we estimate the static equation

gfr, = 98.68 + .083 pe, — 24.24ww?2, — 31.59pill,, T =72, R> = 473
(3.21)  (.030) (7.46) (4.08)

v
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-
Finite-Sample Analysis TS Data: Example Il

_ 2 _
° gfrt 9()38261?—1— ((()gg))pet %;1421)1ww2t %1 S?plllt, T=72,R AT73
® Under TS.1-5, we can reject HO : S, = 0 against the two-sided
alternative at less than the 1% significance level.
® The estimated effect is rather large: a $100 increase in pe increases the
estimated fertility rate by 8.3 children per thousand women.
® Fertility rates were much lower, on average, during WW Il and after
the introduction of the birth control pill.
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-
Finite-Sample Analysis TS Data: Example Il

e A finite distributed lag model with two lags of pe gives

gfrt = 095.87 + .073 pe; — 0058pet 1— (034)pet 2

(3.28) (. 126) (.1557)
—22.13ww2; — 31.30pill;, T =70, R®> = .473
(10.13) (3.98)

® The DL coefficients are very imprecisely estimated. None is statistically
different from zero using the t statistics.

® Joint F statistic for pe, pe:—1, and pe;_o gives p-value = .012, so they
are jointly significant.
® The LTP equals .073 — .0058 + .034 ~ .101.

® Gives the long-run increase in gfr if pe increases permanently by $1

® |ts t statistic (obtained using the lincom command) is 3.38. So we
estimate a strong long-run effect (roughly 10 children per 1,000 women
for an increase in pe of $100).

® Its 95% Cl is about [.041, .160].
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